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Abstract
Image manipulation with text is to semantically modify the appearance of an object in a source image based on the given text
describing the novel visual attributes while retaining other irrelevant information in the image, such as the background. This
has a wide range of applications, such as intelligent image manipulation, and is helpful to those who are not good at painting.
We propose a generative adversarial network having a pair of discriminators with different architectures, namely Paired-D++
GAN, for image manipulation with text where the two discriminators make different judgments: one for foreground synthesis
and the other for background synthesis. The generator of Paired-D++ GAN has the encoder–decoder architecture with skip-
connections and synthesizes an object’s appearance matching the given text description while preserving other parts of the
source image. The two discriminators judge the foreground and background of the synthesized image separately to meet the
given input text description and the given source image. ThePaired-D++GAN is trained using the effectively unconditional and
conditional adversarial learning process in a simultaneous three-player minimax game. Our comprehensively experimental
results on the Caltech-200 bird dataset and the Oxford-102 flower dataset show that Paired-D++ GAN can semantically
synthesize images to match an input text description while retaining the background in a source image against the state-of-
the-art methods.

Keywords Image manipulation · Image manipulation with text · Generative adversarial network · Image synthesis ·
Paired-discriminator

1 Introduction

Image manipulation with text [1–3] is to manipulate the
visual attributes of an object in a given source image seman-
tically with given text descriptions while still retaining
features that are irrelevant to what text descriptions. Since
text descriptions [4] are easier and more natural for us than
image descriptions such as attributes [5], textures [6] or styles
[7], image manipulation with text is promising to widen the
range of applications of image synthesis such as intelligent
image manipulation, computer-aided design and video game
[2,3]. In fact, most text descriptions emphasize foreground
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characterization (i.e., the main object), while the background
is implicitly conditioned. For instance, the text ‘this small
bird has a blue crown and white belly’ only describes the
bird’s appearance without any additional background infor-
mation. As a result, the task can be referred to as rendering
foreground given as a text description into a given source
image.

A straightforward approach is learning a segmentation
mask to automatically separate foreground and background
information. The foreground is then manipulated concerning
the given text. Finally, a new image is created by combin-
ing the manipulated foreground and the original background.
Nonetheless, due to the fact that the well-annotated masks
are not available in the training dataset, learning segmenta-
tion mask is not reasonable, limiting the effectiveness of this
approach in practice. Therefore, we approach our problem by
automatically matching foreground and text description and
retaining other (background) information simultaneously [1–
3].

Generative adversarial network (GAN) [8] is capable of
synthesizing images, and works [4,9–12] have been pro-
posed that condition GAN on either text descriptions [4,9]
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Fig. 1 Examples of synthesized
images. Our results (Paired-D++
GAN) match the text description
more precisely than SISGAN
[1], TAGAN [2] and ManiGAN
[3] while successfully retaining
background of the source image

This small bird has a blue crown and 
white belly.

SISGAN

TAGAN

Paired-D++ 
GAN

ManiGAN

or images [10–12] to synthesize images for various tasks.
Almost all work on image synthesis [1–4,9,13,14] follows
idea of the original GAN architecture where a single discrim-
inator judges whether or not a synthesized image is realistic.

Image manipulation with text requires disentangling the
semantics contained in image and text information and then
combining the disentangled semantics to synthesize realistic
images. This suggests separately dealing with text descrip-
tions and images with different semantic levels. Previous
work [1–3], however, judges the foreground and background
jointly through a single discriminator. As a consequence,
their methods suffer from several potential shortcomings.
Firstly, the foreground in the generated image cannot faith-
fully match the text description. Secondly, the generated
image cannot retain the background in the source imagewell.
For instance, as shown in Fig. 1, SISGAN [1] and TAGAN
[2] reasonably match the foreground and the text descrip-
tion, whereas their background becomes worse than that of
the source image. Meanwhile, MainGAN [3] cannot handle
the task properly.

To advance this task, we design a GAN with a pair of
discriminators, namely Paired-D++ GAN, to separately deal
with text descriptions and source images. Indeed, dual dis-
criminator GAN [15] showed that having two discriminators
is more effective than GANs with one discriminator for
image synthesis.While dual discriminatorGAN [15] uses the
same architecture for the two discriminators in unconditional
GANs to judge real/fake images, we design different archi-
tectures for two discriminators to deal with different levels of
the semantics of text descriptions and images. The two dis-
criminators separately judge the foreground and background
of the synthesized image tomeet an input text description and
a source image.More precisely, one discriminator is designed
for the classification task while the other performs the verifi-
cation task. Furthermore, we employ the skip-connection in
the generator to more precisely retain background informa-
tion in the source image.We also introduce a training process
for adversarial learning in the three-player minimax game of

the generator and two discriminators. In this way, Paired-
D++ GAN improves the quality of synthesized images to
meet the requirements of the text-guided imagemanipulation
problem.We see that Paired-D++ GAN not only matches the
foreground more precisely than the other methods but also
is able to retain the background of the source image suc-
cessfully (see Fig. 1). Experiments on the Caltech-200 bird
dataset [16] and the Oxford-102 flower dataset [17] demon-
strate outperformances of Paired-D++ GAN against SOTAs
[1–3,14,18].

The rest of this paper is organized as follows. We briefly
review and analyze related work in Sect. 2. Next, we present
the details of our proposed method in Sect. 3. Then, Sect. 4
and Sect. 5 discuss our experiments. Section 6 draws the con-
clusion. We remark that this paper extends the work reported
in [19]. Our main extensions in this paper are building a
new network where the network is trained with both uncon-
ditional and conditional adversarial learning processes and
adding more experiments. More precisely, we replace the
fixed pre-trained modules used in both discriminators with
the trainable ones and use the text-adaptive discriminator [2]
to improve foreground-text matching.

2 Related work

With the rapid development of deep learning, many models
for image synthesis have been proposed to achieve highly
realistic images. They include variational auto-encoder [20,
21], auto-regressive models [22,23] and GAN [1–4,8,9,13,
14,18,24,25]. Among them, GAN and its variants show
remarkably realistic results.

GAN [8] consists of a generator and a discriminator. The
generator maps the latent variable into the data space while
the discriminator judges whether the output of the generator
is real or fake. The generator and the discriminator are simul-
taneously trained in a minimax game. Interestingly, GAN
can be constrained on various conditions not only to gener-
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ate plausible images but also to meet the conditions. Some
work condition GANs on the attribute label [5,26] or images
[12,27–30] for image super-resolution [12], domain transfer
[27,28], photo editing [29] and style transfer [30].

Among various conditions on GAN, text descriptions
make image synthesis easier and more friendly to us. [4]
proposed an end-to-end GAN using the text condition. They
employed a pre-trained text encoder [31] to extract text fea-
tures from an input text and then combined text features with
a vector representing randomnoise to produce the input of the
generator. They also employed the combination of text fea-
tures and image features in the discriminator to discriminate
real images and generated images. Their proposed model [4]
became the baseline of the GAN framework for generating
images from text descriptions.

As an extension, amodel conditioned on texts and location
information was proposed [32]. Models with two stages of
GAN, Stack-GAN [9] (and Stack-GAN++ [13]), were also
proposed, showing successfully generated higher resolution
images (256×256), compared to [4] (64×64). [14] proposed
AttnGAN, where an attention mechanism is incorporated
into GAN for a fine-grained text-to-image generation. Their
model generated image details by paying attention to the rel-
evance ofwords in text description and image features. These
models [4,9,13,14,18] condition on GAN only texts or a pair
of texts and location information [32] and focus on gener-
ating a new image. In addition, since the text descriptions
are usually about the foreground, these mentioned methods
generate background in a random manner and struggle to
generate faithful foreground andbackground simultaneously.
Different from aforementioned methods [4,9,13,14,18,32],
our method is set to manipulate a part of image (foreground)
according to text descriptionswhile retaining irrelevant infor-
mation (background). Moreover, we do not aim at generating
high-resolution images as [9,13,14].

Addressing the background problem in image synthe-
sis, [18] proposed to decompose the image synthesis into
two phases using foreground and background generators.
They fed random noise vectors to a long short-term memory
(LSTM) network to obtain hidden states for the foreground
generator and used the first hidden state to generate the back-
ground. They then combined foreground and background by
a compositor operator. However, decomposing foreground
and background may cause less realistic images.

Recent work [33] proposed image manipulation using
open-vocabulary instructions. They first train an image–
caption joint embedding space. Then, the manipulation
is performed by vector arithmetic operations between the
image features and the textual features. Finally, an image
decoder is used to reconstruct the image from manipulated
features. Though their method is capable of handling open-
domain, it requires the manipulation instructions should
clearly define the source object/attribute to be edited and

the target object/attribute to be added (i.e., the inputs con-
sist of an image and two (vocabulary) instructions) which
may cause difficulties for human in practice. Moreover, their
method is able to manipulate objects/attributes one by one.

The models proposed by [1–3] are most related to ours.
They also condition text and source image on GAN. The
architecture of the model used in [1] is, however, similar
to [4] and has a single discriminator: the noise vector in
[4] is replaced by image features from the image encoder.
To enhance the matching between text description and the
foreground, [2] proposed a text-adaptive discriminator. Their
discriminator splits a text description into word-level so that
the discriminator is able to match each word to each visual
attribute more precisely. [3], on the other hand, attempted
to generate attributes matching text description and to recon-
struct text-irrelevant contents of the source image at the same
time. They thus proposed the text-image affine combination
module (ACM) and detail correction module (DCM). The
ACM seeks the text-relevant regions in the source image
to generate new attributes matching given text descriptions,
while theDCMrectifies text-irrelevant regions and completes
missing contents. Though they [1–3] generate images that
match the semantic meaning of the input text description
while maintaining other parts of a source image, they do not
preserve background precisely because the discriminator is
used only for the foreground. To some extent, the model pro-
posed by [3] cannot handle the task properly because their
ACM does not understand the input text well while their
DCM tends to reconstruct the whole source image. Table 1
summarizes our closely related work.

Our main difference from the aforementioned models is
to fully take into account each role of foreground and back-
ground in synthesized images. More precisely, our proposed
Paired-D++GAN is conditioned on both text description and
source images. It has skip-connections in its generator to pre-
serve background information as much as possible and two
discriminators with different architectures for synthesizing
realistic images. Paired-D++GAN generates foreground and
background simultaneously.

3 Proposedmethod

3.1 Network design

Our network follows the GAN architecture [8] for image
synthesis [1,4,9,13]. Like [1–3], we condition GAN on a text
descriptions and a source image.As investigated in [7,19], the
VGG-16 [34] pre-trained on ImageNet dataset [35] weights
background in the early layers and foreground at the latter
layers. More precisely, the 1st to the 3rd ReLU layers cap-
ture background while the 5th to the 7th ReLU layers do
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Table 1 A summary of closely related work

Method Methodology Advantages Disadvantages Dataset

SISGAN [1] –Combine image and text as
the input of the generator

–Learn the shared
representation of image
and text

–Do not match image and
text well

–Caltech–200

–An adversarial training
strategy using image and
text

–Able to semantically
synthesize image with text

–Do not preserve
background precisely

–Oxford–102

TAGAN [2] –Split a text description into
word–level

Better matching between
text description and the
foreground

Do not preserve background
precisely

–Caltech–200

–Match each word to each
visual attribute by using
text–adaptive
discriminator

–Oxford–102

ManiGAN [3] –Text–image affine
combination module
(ACM)

–ACM seeks the
text–relevant regions in
source image to generate
new attributes matching
given text descriptions

–Do not preserve
background precisely

–Caltech–200

–Detail correction module
(DCM)

–DCM rectifies
text–irrelevant regions
and completes missing
contents

–ACM does not understand
the input text well

–COCO

–DCM tends to reconstruct
whole source image

LR–GAN [18] –Generate foreground and
background separately

Solve the background
problem in image
synthesis

The generated images are
less realistic

–MNIST–ONE (one digit)

–Combine generated
foreground and
background by a
compositor operator

–MNIST–TWO (two digits)

–CIFAR–10

–Caltech–200

AttnGAN [14] Incorporate attention
mechanism into GAN

Generate image details by
paying attention to the
relevance of words in text
description and image
features

–Generate background in
random manner

–Caltech–200

–Cannot generate faithful
foreground and
background at the same
time

–COCO

foreground, and the 4th ReLU layer seems to be in-between
as a transition. We thus use different semantic levels of fea-
tures depending on foreground and background. Namely, we
design the network in which a text description on the fore-
ground matches features in the latter layers while features
of a source image in the early layers are preserved as much
background information as possible. This appropriate-level
selection allows our model to synthesize realistic images that
meet both the text description and the source image.

[15] argued that dual discriminators in GAN generate bet-
ter images in quality than a single discriminator, though the

two discriminators have the same architecture. To deal with
foreground and background separately and more precisely,
we employ a pair of discriminators where each of them
independently judges the foreground/background of synthe-
sized images. For different semantic levels of foreground
and background, we design our discriminators with different
architectures and make each play a different role. Namely,
we design one discriminator to evaluatematching foreground
between a text description and a synthesized image following
previous work [1,2,4,9] and the other discriminator to evalu-
ate whether the background of a source image is retained in
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Fig. 2 Framework of our proposed Paired-D++ GAN. The generatorG
with skip-connection synthesizes an image that adaptively changes the
foreground tomatch the text description while retaining the background
of the source images. On the other hand, the foreground discriminator
DFG judges whether or not the foreground agrees with the text descrip-

tion. Meanwhile, the background discriminator DBG judges whether or
not the background is retained as that of the source images. Three net-
works (G, DFG and DBG) are simultaneously trained in a three-player
minimax game

the synthesized image.Wealso introduce an effective training
strategy for adversarial learning in a three-player minimax
game.

3.2 Network architecture

We build our network, Paired-D++ GAN, upon the GAN
architecture with one generator G and a pair of discrimi-
nators, i.e., foreground discriminator DFG and background
discriminator DBG (Fig. 2).

We employ the end-to-end encoder–decoder architecture
for our generatorG following [1]. The generatorG receives a
source image and a text description where the source image
is with the size of 128 × 128 × 3 and the text description
is with a maximum of 50 words. G synthesizes an image
of 128 × 128 × 3 that adaptively changes the foreground to
match the text description while retaining the background of
the source image.

Two discriminators DFG and DBG evaluate: (i) whether
the synthesized image is real/fake, and (ii) whether the syn-
thesized image is consistent with the condition. To this end,
we employ two kinds of loss functions in training either DFG

or DBG: an unconditional loss and a conditional loss. DFG

receives either the generated image or the ground-truth fore-
ground image with the text description to evaluate real/fake
(using the unconditional loss) and foreground-text matching
(using the conditional loss). DBG, on the other hand, receives
either the generated image or the source image with the text
description to evaluate real/fake (using the unconditional
loss) and background preservation (using the conditional
loss). We remark that the two discriminators do not share
their parameters.

We train G, DFG and DBG simultaneously in a three-
player minimax game using unconditional and conditional
adversarial losses. This adversarial learning process enables
our generator G to generate plausible images that match text
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descriptions while preserving the background information of
the source image.

3.2.1 Generator

The goal of the generator is to manipulate a part of a source
image according to the given text. Therefore, it should be
able to understand the image aswell as the text. Like previous
work [1,2], we employ two encoders to extract features from
image and text respectively before feeding their (feature)
combination into a decoder to generate manipulated image.
Our main difference is that we combine image feature and
text feature at high-level layer while retaining background
information of the image using skip-connection. Our usage
of different semantic levels of features is motivated by the
findings of previous work [7,19].

Our generator G consists of an image encoder, a text
encoder and a decoder.

The image encoder is a stack of three convolution layers
that receives the source image size of 128×128×3 to produce
an image feature with the size of 32×32×512 at the top.We
adopt the pre-trained text encoder [31] for our text encoder
and use text embedding augmentation [9] to produce a text
featurewith the size of 1×128. The channel of the text feature
is replicated to the size of 32×32×128 to be consistent with
that of the image feature. We remark that when we replace
pre-trained text encoder [31] with a trainable bidirectional
RNN [36], our performance does not improve much. Hence,
we do not use a trainable text encoder in our generator.

The image feature and the text feature are then concate-
nated to produce an image-text feature as the input of the
decoder.

The decoder in our generator consists of one convolution
layer, four residual blocks [37] and two deconvolution layers.
The convolution layer reduces the channel of the image-text
feature, and the four residual blocks enrich feature maps.
On the other hand, the two deconvolution layers upscale the
feature maps.

We remark that each of the convolution and deconvolution
layers in the image encoder and the decoder is followed by a
batch normalization (BN) layer [38] and a ReLU layer. The
only exception is the last deconvolution layer in the decoder,
where it uses the tanh activation to guarantee that the output
range can be normalized to be [0, 255] (in the test step). We
note that we use images with the range [−1, 1] in the training
step.

To reflect the features at early layers weighting back-
ground information into a synthesized image, we employ
the skip-connection from the image encoder to the decoder.
More precisely, the first layer in the image encoder is con-
nected to the last layer in the decoder, while the second layer
in the image encoder is paired with the second last layer in
the decoder.

3.2.2 Foreground discriminator

The foreground discriminator should discriminate the fore-
ground of real images and that of generated images. We
employ two losses in the foreground discriminator: uncon-
ditional loss (for real/fake discrimination) and conditional
loss (for foreground-text matching evaluation). Following
previous work [1,2,4,9,13,14], we design our foreground dis-
criminator DFG as a classification task that rewards high
probability scores to real images and low ones to generated
images in the adversarial learning phase. More precisely, the
unconditional loss follows work [13,14], while the condi-
tional loss is identical to text-adaptive discriminator [2].

Our DFG consists of an image encoder and a text encoder.
The image encoder is a stack of seven convolution lay-

ers. Each of the first five convolution layers uses the filter
size of 4 × 4, the reflection-padding size of 1 × 1 and the
stride size of 2×2, producing 64, 128, 256, 512 and 512 out-
put channels, respectively. These convolution layers encode
an input to produce high-level semantic image features con-
taining mostly foreground information [7,19]. These image
features are then combined with word features obtained from
the text encoder to produce conditional loss (see Sect. 3.3).
On the other hand, the image features are continuously fed
into the last two convolution layers, each of which is with
the filter size of 1 × 1, and 4 × 4, respectively, no padding,
the stride size of 1 × 1, outputting 256, 4 channels respec-
tively. The output of the last convolution layer indicates how
realistic the image input to DFG is (unconditional loss). We
remark that each of all convolution layers except for the last
one is followed by a BN layer and a ReLU layer.

Like [2], our text encoder is a bidirectional RNN [36],
outputting a vector with the size of 1× 512 for each word in
the text.

For eachword in given text description, we use word-level
local discriminator [2] (i.e., LD in Fig. 2) to compute a score
LDwi by using a sigmoid function: LDwi = σ(W i (wi ) ·
v + bi (wi )), where wi is the i-th word vector from the text
encoder, W i and bi are the weight and the bias correspond-
ing towi , and v is the global average pooling over the image
features. Then, the multiplication of all the scores obtained
by the word-level discriminator, i.e.,

∏T
i=1

[
LDwi

]αi (T is
the number of words in the text, αi is the attention score
of the i-th word across the text), is used as conditional
loss of DFG. The conditional loss indicates the degree of
foreground-text matching. We remark that our conditional
loss is identical with that used in the text-adaptive discrimi-
nator [2]. Please refer [2] for more details. Different from [2]
which computes foreground-text matching using image fea-
tures extracted from three convolution layers, we use image
features from only one convolution layer. This is because
lower-level layers may contain background information. We
follow [4] to train conditional loss in DFG (cf. Eq. 1).
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3.2.3 Background discriminator

The background discriminator evaluates how real and gener-
ated images are different in the background. We, therefore,
design the background discriminator as a verification task
with a limited number of samples in each category. This is
because each image in a dataset has a different background
in general, and the number of samples with the identical
(very similar) background is limited. To this end, we follow
the idea of the Siamese network [39] because it shows the
effectiveness of the verification task. Like our foreground
discriminator, we also employ two losses for training the
background discriminator: unconditional loss (for real/fake
discrimination) and conditional loss (for background preser-
vation verification). More precisely, the unconditional loss
follows work [13,14], whereas the conditional loss is the
contrastive loss [39].

Our DBG consists of an image encoder, a text encoder and
a Siamese network.

Our image encoder employsVGG-16 [34] as its backbone,
and all fully connected layers are discarded. On the top of
VGG-16, we add a convolution layer with the filter size of
4 × 4, no padding, the stride size of 1 × 1, outputting 4
channels. We remark that the weights of the image encoder
are initialized using the weights of pre-trained VGG-16 [34]
on ImageNet dataset [35]. We regard the output of the image
encoder as the unconditional loss.

We design a text encoder for learning the text feature.
This is because text description is useful to disentangle back-
ground and foreground information. Indeed, since the avail-
able number of samples with the same background is limited,
we consider one image with two different text descriptions
(foreground information) as two different images having the
same background. Such images thus can be regarded as pos-
itive samples for the background verification task. Similarly
to the foreground discriminator, the text encoder in our back-
ground discriminator is built upon a bidirectional RNN [36].
We take the last state from the text encoder with the size of
1 × 512 as the text feature. The text feature is then used in
the Siamese network.

The Siamese network consists of four fully connected lay-
ers in which the first three layers are the shared-parameter
layers, and the last one is the joint layer, producing 512,
100, 10 and 1 outputs, respectively. The Siamese network
receives two input features (one from the source image with
the text description and the other from the generated image
with the text description) and passes them to the three shared-
parameter layers separately before being jointly trained at
the last layer. The output of the Siamese network is the con-
ditional loss which indicates the difference in background
between real and generated images.

In order to create the input of the Siamese network, we
feed the input image into the image encoder to compute the

mean and variance at the first four ReLU layers [19] and
then concatenate them with the text feature extracted from
the input text description using the text encoder. We remark
that the size of the input is 1× 1280 where the image feature
is with the size of 1×768 and the text feature is with the size
of 1 × 512.

We propose a novel training strategy for DBG, which is
based on the contrastive loss function [39] that fully uses a
source image and a text description (Eq. 2).

3.3 Adversarial learning for Paired-D++ GAN

Training the generator G, and a pair of discriminators DFG

and DBG becomes a three-player minimax game conditioned
on images and text descriptions. Using positive/negative
training samples, we first update the parameters of DFG while
fixing the parameters of DBG and G. Then we update the
parameters of DBG while fixing the parameters of DFG and
G. Finally, we update the parameters of G while fixing the
parameters of the two discriminators. We iterate this adver-
sarial training to minimize each loss function separately.

For the adversarial training for Paired-D++ GAN, we use
positive and negative samples whose definitions depend on
DFG and DBG. Moreover, we perform both unconditional
and conditional losses in training:

– Unconditional loss A positive sample of DFG is a
ground-truth image, while a positive sample of DBG is
a source image. A sample is negative for either DFG or
DBG if it is generated from generator G.

– Conditional lossApositive sample of DFG is a sample in
which foreground is the ground-truth, and its text descrip-
tion is matching. A sample is negative if (1) foreground is
the ground-truth, but its text description is mismatching,
or (2) foreground is generated even if its text description
ismatching.A positive sample of DBG, on the other hand,
is the onewhere the background of the source image used
in training the generator and discriminators for each iter-
ation is the same regardless of whether text descriptions
are matching or mismatching. A sample is negative if
the background is generated even if the text descriptions
match the foreground.

Let s be an image in a dataset and t be a text description.
Then, we let g be an image in the dataset whose foreground
is the ground-truth to t (t is thus a matching text description
to g). We denote by s̄ a randomly selected image (from the
dataset) having different background from s, and by t̄ a dif-
ferent text description from t (a mismatching text description
to g). We also denote ϕ(·) as the text embedding augmen-
tation [9]. Then, positive/negative samples of DFG and DBG

can be classified as in Table 2.
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Table 2 Types of input pairs used in the adversarial leaning process

DFG DBG
Unconditional Conditional Unconditional Conditional

Positive x1={g} x3={g, t} x6={s} x8={(s, t), (s, t̄)}

Negative x2={G(s, ϕ(t))} x4={g, t̄}, x7={G(s, ϕ(t))} x9={(G(s, ϕ(t)), t), (G(s̄, ϕ(t)), t)},

x5= {G(s, ϕ(t)), t} x10={(G(s, ϕ(t)), t), (G(s, ϕ(t̄)), t̄)}

Let D(·) denote the discriminators (DFG and DBG). At
each iteration in training D(·), we randomly select all the
types of samples in Table 2 from the training dataset and
feed them one by one to D(·) to obtain the probability of
whether the sample is positive or negative. We train the two
discriminators to reward a high score to a positive sample and
a low score to a negative sample. Through the training, we
maximize the ability of D(·) to assign relevant scores to the
samples. The loss functions for D(·) are defined as follows:

LFG = Epdata [log DFG(x1)]
︸ ︷︷ ︸

unconditional loss

+

Epdata [log(1 − DFG(x2))]
︸ ︷︷ ︸

unconditional loss

+

Epdata [log DFG(x3)]
︸ ︷︷ ︸

conditional loss

+

1

2
Epdata [log(1 − DFG(x4))]

︸ ︷︷ ︸
conditional loss

+

1

2
Epdata [log(1 − DFG(x5))]

︸ ︷︷ ︸
conditional loss

, (1)

LBG = Epdata [log DBG(x6)]
︸ ︷︷ ︸

unconditional loss

+

Epdata [log(1 − DBG(x7))]
︸ ︷︷ ︸

unconditional loss

+

Epdata [log DBG(x8)]
︸ ︷︷ ︸

conditional loss

+

Epdata [log(1 − DBG(x9))]
︸ ︷︷ ︸

conditional loss

, (2)

where pdata denotes the all the training data andEpdata means
the expectation over pdata. Each term in Eqs. 1 and 2 corre-
sponds to the type of samples: log(D(·)) for positive samples
and log(1 − D(·)) for negative samples.

Since our adversarial learning process is a three-player
minimax game, we also train the generator G in which we
minimize the terms of log(1− D(·)) in Eqs. 1 and 2. In prac-
tice, however, maximizing log(D(·)) is known to be better
than minimizing log(1 − D(·)) in training G [8]. We also
introduce the reconstruction loss to keep the structure of the

Algorithm 1 Training Paired-D++ GAN
Require: datasetdata, Paired-D++GANwithgeneratorG, foreground
discriminator DFG and background discriminator DBG, epoch to train
T

Ensure: optimized G∗
for t ← 1 to T do

Get a batch {s, t, g, s̄, t̄} from data
xi ← generateSamples(G, s, t, g, s̄, t̄) where i = 1, .., 10
(Table 2)
LFG ← computeFGLoss(DFG, x1, x2 x3, x4, x5) (Eq. 1)
DFG ← updateForegroundDiscriminator(DFG, LFG)
LBG ← computeBGLoss(DBG, x6, x7 x8, x9, x10) (Eq. 2)
DBG ← updateBackgroundDiscriminator(DBG, LBG)
LG ← computeGLoss(DFG, DBG, x2, x5, x7, x10) (Eq 3)
G ←updateGenerator(G,LG)

end for
return G∗

input source image. Now the loss function for G is:

LG = Epdata [log(DFG(x2))]
︸ ︷︷ ︸

unconditional loss

+

Epdata [log(DFG(G(x5)]
︸ ︷︷ ︸

conditional loss

+

Epdata [log(DBG(x7))]
︸ ︷︷ ︸

unconditional loss

+

Epdata [log(DBG(x10))]
︸ ︷︷ ︸

conditional loss

+

λEpdata ‖s − G(s, ϕ(t))‖2 , (3)

where λ is the hyperparameter, and ‖.‖2 is the Euclidean
distance. To trainG, we randomly select an image s, and two
text descriptions t and t̄ to generate the synthesized images.
We then feed them to the DFG and DBG to receive feedback
signals for updating parameters of G. We remark that since
our aim is not to reconstruct the source image, λ can be small
(we set λ = 0.0002 in our experiments).

As discussed in [4], training DFG with matching and mis-
matching text descriptions enables DFG to feedback stronger
image–text matching signals, allowing G to generate plausi-
ble images that match text descriptions. Our usage of a pair
of an image and a text description in training DBG, on the
other hand, enables DBG to generate stronger signals as well,
leading to the capability of G of retaining background infor-
mation (though at the beginning, DBG spends more time to
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verify background, DBG gradually need not concern fore-
ground thanks to text descriptions and has the ability of
easily judging whether the image is real or generated). In
addition, the usage of unconditional loss in both discrimina-
tors enables our generator to generate more realistic images.
Accordingly, the above adversarial learning brings Paired-
D++ GAN the capability of generating realistic images that
match text descriptions in the foreground and precisely retain
the background of source images. Our adversarial learning
procedure is illustrated in Algorithm 1.

4 Experimental setup

4.1 Dataset and comparedmethods

Dataset. We used the Caltech-200 bird dataset [16] and
the Oxford-102 flower dataset [17]. The Caltech-200 bird
dataset contains 11,788 images belonging to 200 different
bird classes. The Oxford-102 flower dataset has 8189 images
with 102 classes of the flower. Each image in the datasets
has 10 captions collected by [31]. Following previous work
[1,2,4], we split the Caltech-200 dataset into 150 training
classes and 50 testing classes, and the Oxford-102 dataset
into 82 training classes and 20 testing classes. We remark
that we resized the images used in our experiments to ones
with 128 × 128.
Compared methods. We compared our method with other
text-guided image manipulation methods, including SIS-
GAN [1], TAGAN [2] andManiGAN [3]. We also compared
our method with LR-GAN [18] that generates image fore-
ground andbackground separately and recursively from input
text descriptions (we chose this though the task is different
because it generates realistic images). In order to compare
our method with state-of-the-art in text-to-image synthesis,
we employedAttnGAN[14].Wecarefully adapted compared
methods for comparisonbasedon the public implementations
provided by the authors. For SISGAN [1], we used the re-
implementation by Seonghyeon1 (as recommended by the
authors of SISGAN [1]). For TAGAN [2], we used source
code and pre-trained models provided by the authors2. For
ManiGAN [3], we employed the authors’ pre-trained model
on Caltech-200 and trained a new model on Oxford-102
using provided source code3. For LR-GAN [18], we used
the publicly available source codes with the parameters rec-
ommended by the authors4. We remark that we used the

1 https://github.com/woozzu/dong_iccv_2017.
2 https://github.com/woozzu/tagan.
3 https://github.com/mrlibw/ManiGAN.
4 https://github.com/jwyang/lr-gan.pytorch.

combination of a noise vector and a text feature [4] as input
for LR-GAN [18]. For AttnGAN [14], we used a pre-trained
model on Caltech-200 and adapted their provided implemen-
tation to train a new model on Oxford-1025.

4.2 Implementation and training details

We implemented our model in PyTorch. We adopted the
pre-trained text encoder [31] without any fine-tuning in our
generator. Like [1], we also used the image augmentation
techniques (i.e., flipping, rotating, zooming and cropping).
Note that these augmentation techniques are also employed
in the compared methods. We conducted all the experiments
using a PC with a CPU 6-cores Xeon 3.7GHz, 64GB of
RAM and a GTX1080 Titan GPU (11GB of VRAM).

We optimized the adaptive loss functions (Sect. 3.3) using
Adam optimizer [40] with the learning rate of 2× 10−3, the
learning rate decay of 0.5 performed every 100 epochs, the
momentum β1 = 0.9 and β2 = 0.999, and the division from
zero parameter ε = 10−8. We did not use the weight decay.
We trained our model with a batch size of 48 for 600 epochs.

4.3 Evaluationmetrics

We use the inception score (I S) [41] and Fréchet inception
distance (F I D) [42] to evaluate the overall quality of syn-
thesized images. We also use two metrics, foreground score
(FGS) and background score (BGS), for evaluating fore-
ground and background of synthesized images separately.

I S is widely used for the generative model evaluation
through the output of the Inception-v3 network [43]:

I S(G) ≈ exp(
1

N

N∑

i=1

DKL(p(y|x̂ (i)|| p̂(y)))), (4)

where x̂ is a synthesized image by the generator G, N is the
number of generated images, DKL is the Kullback–Leibler
divergence, y indicates an instance of all classes given in
the dataset, p(y|x̂) is the conditional class distribution, and
p̂(y) = 1

N

∑N
i=1 p(y|x̂ (i)) is the empirical marginal-class

distribution.
F I D measures the similarity of real and generated data

using the Fréchet distance [44] between their activation dis-
tributions extracted from the pool3 layer of the Inception-v3
network [43]:

F I D=∥
∥μreal − μgen

∥
∥2+tr(�real+�gen−2(�real�gen)

1/2),

(5)

5 https://github.com/taoxugit/AttnGAN.
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whereμreal,μgen �real and�gen aremeans and covariance
matrices of the activation distributions of real and generated
data, respectively, and tr(·) is the trace.

We employ the visual-text shared-space [31] and compute
the matching (cosine similarity) between text descriptions
and foreground for the foreground evaluation:

FGS = fim · ftxt
‖ fim‖ ‖ ftxt, ‖ , (6)

where fim and ftxt are the features from the image encoder
and the text encoder.

For background evaluation, we use

BGS =
∥
∥x̂ � xseg − x � xseg

∥
∥

N
, (7)

where x is the source image and � is the element-wise mul-
tiplication. xseg is the inverse map of xseg where xseg is the
binary segmentation map of x provided from the dataset and
N is the number of pixel of the background. We use xseg to
mask foreground for x and x̂ .

5 Experimental results

We validated the effectiveness of Paired-D++ GAN by
qualitative evaluation, quantitative evaluation and detailed
analysis. Since the user study is expensive and its results are
somewhat subjective in some sense, we instead investigated
our method using quantitative scores to quantify the effec-
tiveness of image manipulation with text objectively.

5.1 Qualitative evaluation

Figures 3 and 4 illustrate examples of the results obtained
by our method and text-guided image manipulation SOTAs
(SISGAN [1], TAGAN [2] and ManiGAN [3]) on Caltech-
200 bird dataset [16] and Oxford-102 flower dataset [17].
They show that the synthesized images by our method match
the text descriptionsmore precisely than othermethodswhile
successfully retaining the background of the source image.

On the Caltech-200 dataset (Fig. 3), we see that the results
by SISGAN [1] are capable of (not always though) match-
ing the foreground and the text descriptions; they, however,

Source 
image

Text This small yellow bird has grey wings, 
and a black bill.

SISGAN

TAGAN

ManiGAN

Paired-D++ 
GAN

A small brown bird with a brown 
crown has a white belly.

Source 
image

Text An orange bird with green wings and 
blue head.

SISGAN

TAGAN

ManiGAN

Paired-D++ 
GAN

This particular bird with a red head and breast 
and features grey wings.

Fig. 3 Visual comparison on the Caltech-200 bird dataset [16]. For each block: source images, text description, results by SISGAN [1], TAGAN
[2], ManiGAN [3] and ours. Each image is generated using a source image and a text description
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Source 
image

Text The light purple flower has a large 
number of small petals.

SISGAN

TAGAN

ManiGAN

Paired-D++ 
GAN

The red flower has no visible stamens.

Source 
image

Text The flower shown has reddish petals with 
yellow edges.

SISGAN

TAGAN

ManiGAN

Paired-D++ 
GAN

This flower has petals of pink and white color 
with yellow stamens.

Fig. 4 Visual comparison on Oxford-102 flower dataset [17]. For each block: source images, text description, results by SISGAN [1], TAGAN [2],
ManiGAN [3] and ours. Each image is generated using a source image and a text description

do not preserve background well. The results obtained by
TAGAN [2] are reasonable, but they are not successful in
background preservation. In most cases, though the results
byManiGAN [3] aremore realistic, we observe that they can-
not understand the text description well and the background
in generated image is different from that in the source image.
Our method, on the other hand, is clearer in foreground and
background.

On the Oxford-102 dataset (Fig. 4), we see that SIS-
GAN [1] have some failures in synthesizing images. We also
observe thatManiGAN[3] again cannot handle the task prop-
erly because of a lack of text understanding. The results by
TAGAN [2] and ours are comparable, but our results are bet-
ter to some extent. In particular, ourmethod not onlymatches
color attributes described in text description but also is able
to handle quantitative attributes while TAGAN [2] is not the
case (see the first sample in Fig. 4). This may be because we
employ two discriminators separately so that the foreground
discriminator has more chance to deal with the text descrip-
tion in more detail. We remark that the number of epochs in
training time in our method and that of TAGAN [2] are the
same.

5.2 Quantitative evaluation

For the quantitative evaluation, we computed I S, F I D,
FGS and BGS of the synthesized images, which are shown
in Table 3. To compute I S, we iterated 10 times the exper-
iment that we synthesized 8000 images and computed the
average and the standard deviation of the resulting scores, as
recommended in [41]. To compute F I D, we generate 5000
images for each dataset. To compute FGS and BGS, we iter-
ated 5 times the experiment that we synthesized 600 images
and computed the average of the resulting scores. Note that
we cannot compute BGS for LR-GAN [18] and AttnGAN
[14] because these models are set to generate a new image
rather than tomanipulate a source image (i.e., noground-truth
background). We also remark that we used the visual-text
shared-space model [31] pre-trained on the Caltech-200 (or
Oxford-102) dataset to compute features for FGS.

Table 3 shows that our method (almost) achieves the best
performance in all the metrics, meaning that the images
synthesized by our method are superior not only in the over-
all quality (I S, F I D) but also in foreground-text matching
(FGS) and in background preservation (BGS). The outper-
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Table 3 Quantitative comparison using I S (larger is better), F I D (smaller is better), FGS (larger is better) and BGS (smaller is better)

Dataset Caltech-200 Oxford-102
Metric I S ⇑ F I D ⇓ FGS ⇑ BGS ⇓ I S ⇑ F I D ⇓ FGS ⇑ BGS ⇓
Paired-D++ GAN 7.78±0.35 23.76 0.137 0.0975 5.46±0.17 16.93 0.143 0.0537

SISGAN [1] 5.56±0.14 67.24 0.052 0.1512 4.03±0.11 81.38 0.041 0.1102

TAGAN [2] 7.29±0.21 34.49 0.095 0.1291 5.39±0.27 55.29 0.108 0.1036

ManiGAN [3] (8.47) 38.27 0.046 0.2367 4.36±0.18 82.32 0.082 0.1729

LR-GAN [18] 5.92±1.04 89.10 0.032 – 3.49±0.04 103.11 0.027 –

AttnGAN [14] (4.36±0.03) 22.37 0.091 – 4.73±0.12 37.44 0.068 –

The best results are given in Bold, the second best results are given in Italic. Scores in parentheses indicate those reported in original papers

formance of our method against text-guide image manipu-
lation methods (SISGAN [1], TAGAN [2], ManiGAN [3])
in all the metrics confirms that evaluating foreground and
background separately in the training phase is effective.
Compared to LR-GAN [18], we see that our methods, SIS-
GAN [1], TAGAN [2] and ManiGAN [3], generate the more
realistic image, suggesting that for semantic image synthe-
sis, generating foreground andbackground at the same time is
better than separately and recursively generating foreground
and background. In general, text-guided image manipulation
methods (ours, SISGAN [1], TAGAN [2],ManiGAN [3]) are
better in generating realistic images and in foreground-text
matching than AttnGAN [14]. This emphasizes the advan-
tages of text-guide imagemanipulationmethods over directly
generating images from text.

5.3 More detailed analysis

5.3.1 Ablation study

In order to investigate the contribution of each component
in the performance, we compare our complete model with
several ablation models (see Fig. 5 and Table 4). We classify
all the ablation models into two: (A) our complete model,
model w/o attention, model w/o trainable modules, model
w/o unconditional loss (these employ two discriminators)
and (B) model w/o DFG and model w/o DBG (these employ
one discriminator only). The details of the ablation models
are as follows. The model w/o attention denotes the replace-
ment of the word-level local discriminator (in the foreground
discriminator) by just concatenating the image feature and
text feature to compute the foreground-text matching. The
model w/o trainable modules denotes the replacement of the
trainable image encoder (in the background discriminator)
and the text encoder (in both the foreground and back-
ground discriminators) by the fix VGG-16 [34] pre-trained
on ImageNet [35] and the fix pre-trained text encoder [31]
respectively (meaning that the parameters of these modules
are not updated during training time). The model w/o uncon-
ditional loss denotes the dropping of the unconditional loss

This vibrant red bird has a pointed 
black beak.

Source image

Text

Complete 
model

Model w/o DFG

Model w/o DBG

Model w/o 
attention

Model w/o 
trainable 
modules

Model w/o 
unconditional 
loss

This flower is white, pink, and 
yellow in color, and has petals that 
are multi colored.

Fig. 5 Examples of results obtained by ablation models

term in the loss function (Sect, 3.3). The model w/o DFG

and the model w/o DBG denote the models dropping the
foreground discriminator and the background discriminator,
respectively.

Qualitative evaluationWeshowsomeexamples obtainedby
all the ablationmodels in Fig. 5. Overall, we visually observe
that themodels in (A) generate better images than themodels
in (B). In particular, the models in (A) are able to generate
plausible images in terms of foreground-text matching and
background preservation. The models in (B), on the other
hand, are manageable in either foreground or background
but not in both.

Among the models in (A), we see that foreground-text
matching in the model w/o attention is not very impres-
sive. The model w/o trainable modules cannot manipulate
the foreground well while the background is not success-
fully preserved. We also see that the generated images by the
model w/o unconditional loss are reasonable but less realis-
tic. Our complete model, on the other hand, is better in both
foreground-text matching and background preservation.
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Table 4 Quantitative comparisons on ablation models (bold is better)

Dataset Caltech-200 Oxford-102
Metric I S ⇑ F I D ⇓ FGS ⇑ BGS ⇓ I S ⇑ F I D ⇓ FGS ⇑ BGS ⇓
Complete model (DFG + DBG) 7.78±0.35 23.76 0.137 0.0975 5.46±0.17 16.93 0.143 0.0537

Model w/o attention 6.56±0.26 28.27 0.093 0.1036 4.89±0.19 38.29 0.121 0.0617

Model w/o trainable modules 6.43±0.17 26.28 0.085 0.1206 4.71±0.17 41.66 0.108 0.0702

Model w/o unconditional loss 6.19±0.13 52.49 0.102 0.1184 4.82±0.23 53.27 0.115 0.0643

Model w/o DFG 5.83±0.19 47.26 0.062 0.1064 4.87±0.23 49.16 0.057 0.0718

Model w/o DBG 6.37±0.31 39.65 0.081 0.1372 5.03±0.26 47.72 0.091 0.1035

When we drop either the foreground discriminator or the
background discriminator, the models are unable to work
properly. In particular, the model w/o DFG cannot deal with
the text description well, while the model w/o DBG cannot
retain the background. This means that focusing solely on
either the foreground or the background is unable to gain the
performance.
Quantitative evaluation To quantitatively evaluate the abla-
tionmodels, wemeasure I S, F I D, FGS and BGS as shown
in Table 4. We note that the settings of this quantitative eval-
uation are the same as the experiments in Sect. 5.2.

From the fourth and fifth rows in Table 4 we see that
the scores obtained by either the model w/o attention or the
model w/o trainable modules are worse than those by our
complete model. These observations indicate the necessity
of the word-level discriminator and the trainable modules.
Furthermore, we may regard the model w/o trainable mod-
ules as an incremental extension of the work reported in [19].
Through comparing the model w/o trainable modules with
our complete model, we may conclude that our main exten-
sions in this paper are sufficiently effective.

Next, we evaluate the plausibility of using the uncon-
ditional loss. The sixth row in Table 4 shows that the
performance loss of overall quality (I S, F I D) is worse than
that of FGS and BGS. We may conclude that the usage of
the unconditional loss indeed works for improving the qual-
ity of generated images while the conditional loss does for
foreground-text matching and background preservation. We
remark that the model w/o conditional loss is not applicable
because our model is a kind of conditional GAN.

Finally, from the last two rows inTable 4,we see that either
the model w/o DFG or the model w/o DBG drops the perfor-
mance of our method drastically. This confirms the necessity
of both the discriminators (DFG and DBG) in our method.We
also see that the model w/o DFG achieves worse FGS and
better BGS than the model w/o DBG, and vice versa. These
observations indicate that DFG and DBG properly work for
the foreground and the background each.

5.3.2 Interpolation results

We demonstrated the smooth interpolation between the
source image and the target image. Fig. 6 shows synthe-
sized images obtained by the linear interpolation between the
source and the target images. In Fig. 6 (first two samples), we
interpolated two source images with a fixed text description.
In contrast, we kept the source image fixed while changing
text descriptions in Fig. 6 (last two samples). These results
indicate that our method has the capability of independent

This vibrant red bird has a pointed 
black beak.

This flower has petals that are dark 
pink with white edges and pink stamen.

A black bird.

This red bird has blue wings.

This flower has petals that are yellow with 
shades of orange.

The petals of this flower are white with a 
large stigma.

Fig. 6 Examples of interpolation results. Two first samples: interpola-
tion between two source images with the same target text description.
Two last samples: interpolation between two target text descriptions for
the same source image
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Source 
images

Text 
The petals of this flower 
are white with a large 
stigma.

Results 

The red flower has no 
visible stamens.

A yellow bird with a black 
on wings.

This bird is completely 
white.

Source 
images

Text 

Results 

Fig. 7 Zero-shot results from a source image and text descriptions that
are not related to each other, showing the effectiveness of foreground
and background discriminators

A small bird with brown wings, 
vanilla break and a small black beak

The flower have large petals that are 
pink with yellow on some of the petals

Fig. 8 Zero-shot results from the same source image and text descrip-
tions, showing variety of foregrounds

interpolation between source images and text descriptions.
We remark that our method preserves the background well
regardless of the interpolation.

Figure 7 shows generated images obtained using source
images from the Caltech-200 [16] dataset with text descrip-
tions from the Oxford-102 [17] dataset (not used in the
training phase), and vice versa. Fig. 7 shows that our model
retains the background of source images and changes only
the foreground to match text descriptions (e.g., color) even
if they are not used in training (regardless of untrained text
descriptions). This illustrates the flexible capability of our
model to disentangle the foreground and the background.

We also show in Fig. 8 the effectiveness of text embedding
augmentation [9] in our method to synthesize various images
using the same source image and text descriptions.

This is a small bird with tis body covered 
in blue feathers, and some brown feathers 
on its wings.

Source image

Text

256x256

512x512

Fig. 9 Examples of failure cases when synthesizing high resolution
images

5.4 Limitations

We visually observe that our method ignores the shape
of the foreground in the given text. For instance, consider-
ing the given text “This small yellow bird has gray wings,
and a black bill” in Fig. 3, we see that our method is unable
to change the shape of the birds to the small ones. This is
because our method automatically detects foreground and
directly edits on the detected foreground rather than gener-
ating a new foreground. Moreover, we do not use any extra
shape-guide information to instruct the network. We remark
that other text-guide image manipulation methods (SISGAN
[1], TAGAN [2] and ManiGAN [3]) have the same limita-
tions. Adding extra shape-guide information to manipulate
the foreground more precisely is left for future work.

Even we do not aim at generating high-resolution images,
we experimentally explore the capability of our model in
dealing with higher resolution. To this end, we employ our
trained models on the source images with the size of 256 ×
256 and 512×512. As shown in Fig. 9, we see that our model
is capable of changing a part of the foreground corresponding
to a given text, but it cannot preserve the background well.
Developing a method that can handle source images of any
size is also left for future work.

6 Conclusion

We proposed Paired-D++ GAN conditioned on both text
descriptions and images for image manipulation with text.
Our Paired-D++ GAN consists of one generator and two
discriminators with different architectures where one dis-
criminator is used for judging the foreground, and the other
is for judging the background. Our method is able to syn-
thesize a realistic image where an input text description
matches its corresponding part (foreground) of the image
while preserving the background of a given source image.
Experimental results on the Caltech-200 and the Oxford-102
datasets demonstrate the efficacy of our method.
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