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Abstract. We propose an end-to-end network for image generation from
given structured-text that consists of the visual-relation layout mod-
ule and stacking-GANs. Our visual-relation layout module uses relations
among entities in the structured-text in two ways: comprehensive usage
and individual usage. We comprehensively use all relations together to
localize initial bounding-boxes (BBs) of all the entities. We use indi-
vidual relation separately to predict from the initial BBs relation-units
for all the relations. We then unify all the relation-units to produce the
visual-relation layout, i.e., BBs for all the entities so that each of them
uniquely corresponds to each entity while keeping its involved relations.
Our visual-relation layout reflects the scene structure given in the in-
put text. The stacking-GANs is the stack of three GANs conditioned on
the visual-relation layout and the output of previous GAN, consistently
capturing the scene structure. Our network realistically renders entities’
details while keeping the scene structure. Experimental results on two
public datasets show the effectiveness of our method.

1 Introduction

Generating photo-realistic images from text descriptions (T2I) is one of the
major problems in computer vision. Besides having a wide range of applications
such as intelligent image manipulation, it drives research progress in multimodal
learning and inference across vision and language [1,2,3].

The GANs [4] conditioned on unstructured text description [5,6,7,8,9] show
remarkable results in T2I. Stacking such conditional GANs has shown even more
ability of progressively rendering a more and more detailed entity in high reso-
lution [6,9]. However, in more complex scenarios where sentences are with many
entities and relations, their performance is degraded. This is because they use
only entity information in given text descriptions for rendering a specific entity,
leading to a poor layout of multiple entities in generated images.

In the presence of multiple entities, besides the details of each entity, how
to localize all the entities so that they reflect given relations becomes crucial
for better image generation. Indeed, recent work [1,10,11,12] show the effective-
ness of inferring the scene layout first from given text descriptions. Johnson+[1],
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Fig. 1: Overall framework of our method. Given a structured-text (scene graph),
our method predicts initial BBs for entities using all relations together, next
takes individual relation one by one to infer a relation-unit for the relation, then
unifies all the relation-units to produce visual-relation layout. Finally, the layout
is converted to an image. Color of each entity BB corresponds to that in the scene
graph. Red dotted arrow means the individual usage of relations.

Li+[10], and Ashual+[11] use structured-text, i.e., scene graphs [2], first to con-
struct a scene layout by predicting bounding boxes and segmentation masks for
all entities, then convert it to an image. Hong+[12] constructs a semantic layout,
a scene structure based on object instances, from input text descriptions and con-
verts the layout into an image. However, those mentioned methods [1,10,11,12]
aggregate all relations in which each entity is involved, and then localize all enti-
ties’ bounding-boxes at the same time. As a result, the predicted bounding-boxes
do not preserve the relations among entities well. Localizing entities faithfully
by preserving their relations given in text descriptions is desired.

We leverage advantages of the pyramid of GANs and inferring the scene lay-
out, proposing a GAN-based model for T2I where our network steps further in
relation usage by employing not only all available relations together but also
individual relation separately. We refer the former usage of relations as compre-
hensive while the latter as individual. Our network has two steps: (1) inferring
from input the visual-relation layout, i.e., localized bounding-boxes for all the
entities so that each of which uniquely corresponds to each entity and faith-
fully preserves relations between the entities, and (2) progressively generating
coarse-to-fine images with the pyramid of GANs, namely stacking-GANs, con-
ditioned on the visual-relation layout. The first step takes the comprehensive
usage of relations first to generate initial bounding-boxes (BBs) for entities as
in [1,10,11,12], and then takes the individual usage to predict a relation-unit for
each subject–predicate–object relation where all the relations in the input are ex-
tracted through its scene graph [2]. Each relation-unit consists of two BBs that
participate in the relation: one for a “subject” entity and one for an “object”
entity. Since one entity may participate in multiple relations, we then unify all
the relation-units into refined (entity) BBs (including their locations and sizes)
so that each of them uniquely corresponds to one entity while keeping their
relations in the input text. Aggregating the refined BBs allows us to infer the
visual-relation layout reflecting the scene structure given in the text. In the sec-
ond step, three GANs progressively generate images where entities are rendered
in more and more details while preserving the scene structure. At each level,



Visual-Relation Conscious Image Generation from Structured-Text 3

a GAN is conditioned on the visual-relation layout and the output of previous
GAN. Our network is trained in a fully end-to-end fashion.

The main contribution of our proposed method is our introduction to the indi-
vidual usage of subject–predicate–object relations for localizing entity bounding-
boxes, so that our proposed visual-relation layout surely preserves the visual
relations among entities. In addition, we stack and condition GANs on the visual-
relation layout to progressively render realistic detailed entities that keep their
relations even from complex text descriptions. Experimental results on COCO-
stuff [13] and GENOME [14] demonstrate outperformances of our method against
state-of-the-arts. Fig. 1 shows the overall framework of our proposed method.

2 Related work

Recent GAN-based methods have shown promising results on T2I [1,5,6,8,9,12,15].
They, however, struggle to faithfully reproduce complex sentences with many en-
tities and relations because of the gap between text and image representations.

To overcome the limitation of GANs conditioned on text descriptions, a two-
step approach was proposed where inference of the scene layout as an interme-
diate representation between text and image is followed by using the layout to
generate images [1,10,11,12]. Since the gap between the intermediate represen-
tation and image is smaller than that of text and image, this approach generates
more realistic images. Zhao+[16] and Sun+[17] propose a combination of ground-
truth (GT) layout and entity embeddings to generate images. Hong+[12] infers a
scene layout by feeding text descriptions into a LSTM. More precisely, they use a
LSTM to predict BBs for all entities independently, then employ a bi-directional
conv-LSTM to generate entity shapes from each predicted BB without using
any relation. The function of the bi-directional conv-LSTM used here is just the
putting-together. They then combine the layout with text embeddings obtained
from the pre-trained text encoder [7], and use a cascade refinement network
(CRN) [18] for generating images.

Johnson+[1], Li+[10], and Ashual+[11] employ a scene graph [2] to predict
a layout and then condition CRN [18] on the layout. The graph convolution
network (GCN) used in these methods aggregates available relations of all the
entities together along the edges of the scene graph. Namely, only the compre-
hensive usage of relations is employed. Consequently, individual relation infor-
mation is lost at the end of GCN because of the averaging operation on entity
embeddings. Averaging entity embeddings means mixing different relations in
which a single entity is involved, resulting in failure of retaining individual re-
lation information. Different from [1], [10] retrieves entity appearances from a
pre-defined tank while [11] adds entity appearances to the layout before feeding
it to the generation part. The layout in [1,10,11,12] is constructed through only
the comprehensive usage of relation among entities for BBs’ localization, leading
poor scene structure as a whole even if each entity is realistically rendered.

Our main difference from the aforementioned methods is to construct the
visual-relation layout using subject–predicate–object relations between entities
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Fig. 2: Our proposed network model consisting of the visual-relation layout mod-
ule and the Stacking-GANs.

extracted from an input structured-text not only comprehensively but also in-
dividually. Recursively conditioning stacking-GANs on our constructed visual-
relation layout enables us to progressively generate coarse-to-fine images that
consistently preserve the scene structure given in texts.

3 Proposed method

Our method is decomposed into two steps: (1) inferring the visual-relation layout
θ(t) from structured-text description t, and (2) generating an image from the

visual-relation layout, namely Î = G(θ(t)). To this end, we design an end-to-end
network with two modules: the visual-relation layout module and the stacking-
GANs (Fig. 2). We train the network in a fully end-to-end manner.

3.1 Visual-relation layout module

The visual-relation layout module constructs the visual-relation layout θ(t) from
a given structured-text description t (Fig. 3) where t is assumed to be converted
into a scene graph [2], i.e., the collection of subject–predicate–object ’s. After the
pre-processing on converting t to its scene graph, the comprehensive usage sub-
net in this module predicts initial BBs for all the entities in t by aggregating all
available relations together through GCN (“comprehensive usage”). The indi-
vidual usage subnet takes each subject–predicate–object relation from the scene
graph one by one and select the pair of initial BBs involved in the relation
(predicate): one for “subject” entity and one for “object” entity. The subnet
then adjusts the location and size of the pair of initial BBs using the relation
(“individual usage”) to have a relation-unit for the relation. Since one entity
may participate in multiple relations, it next unifies relation-units so that each
entity uniquely has a single BB (called refined BB) that is further adjusted in
location and size using weights learned from all the participating relations. The
RefinedBB2layout subnet constructs the visual-relation layout by aggregating
all the refined BBs together using conv-LSTM.
Preprocessing. Similar to [1], we convert the structured-text t to its scene
graph (E,P ) where E ⊆ C and P ⊆ C×R×C. C and R are the set of categories
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Fig. 3: Details of visual-relation layout module. This figure illustrates the pre-
diction for two subject–predicate–object relations.

and the set of relations given in a dataset. An edge of (E,P ) is associated with
one subject–predicate–object. It is directed and represented by (es, p, eo) with
entities es, eo ∈ E and predicate p ∈ R (s and o indicate subject and object).

Like [1], we use a learned embedding layer to produce the entity embedding
with the size of 1× |C| and the predicate embedding with the size of 1× |R| for
any of all the entities and predicates appearing in (E,P ). Any entity embedding
is associated with a single default BB presented by [x, y, w, h] ∈ [0, 1]4 where x
is the left coordinate, y is the top coordinate, w is the width, and h is the height.
We set x = y = 0 and w = h = 1 as default. This process ensures that all the
entities appear in the image. In practice, we concatenate the default BB and its
associated entity embedding to produce the vector with the size of 1× (|C|+ 4).

Comprehensive usage subnet. This subnet applies the comprehensive usage
to predict a single initial BB for each entity appearing in t as in [1,10,11,12]. This
subnet gives us initial locations and sizes of entities and they do not necessarily
satisfy the relations given in t.

In order to aggregate all information along the edges in the scene graph,
we employ GCN [1]. Our GCN is mostly identical to [1] with a modification
that produces 388 outputs instead of 384 not only to enrich entity/predicate
embeddings as in [1,10,11] but also to infer initial BBs. We do not use the
average pooling layer on top of GCN to retain individual relation information.

For each edge k of (E,P ), the triplet (es
k,pk, e

o
k) and two default BBs with

the size of 1× (|C|+ |R|+ |C|+ 8) are processed to give enriched e′sk , p′k, and e′ok
embeddings with the size of 1 × 128 each, separately, and a pair of initial BBs
(one for “subject” and one for “object”) with the size of 1× 4 each.

Individual usage subnet. Since the initial BBs of the entities do not always
satisfy the relations given in t, we adjust their locations and sizes using each
relation separately. For each relation, we select a pair of initial BBs corresponding
to the “subject” and “object” involved in the relation, and adjust the locations
and sizes of the pair of BBs using the relation to have a relation-unit for the
relation consisting of two BBs for “subject” and “object” entities in the relation.
This process causes the situation where multiple BBs correspond to the same
entity, as different relations may involve same entities in common. We thus move
to focus on each entity to unify its corresponding BBs into a single BB (called
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refined BB) where we use weights learned to retain all the relations. Accordingly,
the function of this subnet is two-fold: relation-unit prediction using individual
relation separately and unification of multiple BBs corresponding to the same
entity into a single refined BB. The subnet is built upon two fully-connected
layers followed by a ReLU layer [19] producing 512 and 8 outputs.

For each edge k of scene graph (E,P ), its enriched embeddings and its corre-
sponding pair of initial BBs with the size of 1×392(= 128+4+128+128+4) are
fed into this subnet to infer relation-unit (bs

k, b
o
k) with the size of 1×8. Each BB

(bs
k or bo

k) in the relation-unit is associated with enriched embedding either e′sk
or e′ok , respectively for “subject” or “object”. We remark that the total number
of obtained BBs is |{bs

k, b
o
k}| = 2× |P |, which is in general larger than |E|.

To encourage the refined BB of each entity to keep its involved relations, we
use the relation loss Lrel (Sec. 3.3) in a supervised manner. This is because Lrel
indicates the degree of retaining the involved relations in terms of relation-unit.

For entity ei ∈ E, let Bi = {Biν} denote the set of its corresponding BBs
(appearing in different relation-units) and βi = {βiν} be the set of their weights.

We define the refined BB: B̂i =
∑|Bi|
ν=1 {(1+βiν)×Biν}∑|Bi|

ν=1 (1+βiν)
.

Each weight in βi is obtained from the outputs of the softmax function in
the relation auxiliary classifier using the relation loss Lrel.

At the beginning of training, relation-units cannot exactly reproduce their
involved relations. Their weights thus tend to be close to zero, leading B̂i above
almost similar to the simple average. Our refined BBs may be close to those
of [1,10,11] at the beginning of training yet they keep their relations thanks
to their weights. As training proceeds, the contribution of the relation-units
retaining relations consistent with text t to the refined BB gradually increases.
As a result, the location and size of the refined BB are continuously altered to
keep relations consistent with t.

For entity ei, its embeddings that are associated with {Biν}’s over ν are

averaged. In this way, we obtain the set of refined BBs {B̂i} and their associated

embeddings for all the entities in E. We remark that |{B̂i}| = |E|.
If all the initial BBs completely keep their relations, the individual usage

subnet works as the averaging operator as in [1,10,11] and our visual-relation
layout is similar to the layout by [1,10,11]. In practice, however, the comprehen-
sive usage of relations cannot guarantee to completely keep the relations. Our
individual usage subnet plays the role of adjusting all the BBs in location and
size to keep their relations as much as possible using each relation separately.

RefinedBB2layout subnet. In order to construct the visual-relation layout, we
aggregate all the refined BBs and transfer them from the bounding-box domain
to the image domain. This process should meet two requirements: (i) each entity
in the image should be localized and resized to match its individual refined BB,
and (ii) each entity should appear in the image even if some refined BBs overlap
with each other. To this end, we design refinedBB2layout subnet as a learnable
network rather than the putting-together operation. We build this subnet using
a conv-LSTM [20] with the 5 hidden states each outputting 128 channels.
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For B̂i of entity ei, we first convert it to the binary mask with the size of
64× 64× 128 whose element is 1 if and only if it is contained in B̂i, 0 otherwise.
Then, we reshape its associated embedding from 1× 128 to 1× 1× 128. Finally,
the reshaped embedding is wraped to B̂i using the bilinear interpolation [21] for
the layout of entity ei (64× 64× 128). To produce θ(t), we feed the sequence of
entity layouts into the refinedBB2layout subnet. The size of θ(t) is 64×64×128.

3.2 Stacking-GANs

We condition three GANs, namely stacking-GANs, on θ(t) to progressively gen-
erate coarse-to-fine images with the size of n × n × 3 (n = 64, 128, 256). Each
GAN is identical to CRN [18]. Parameters are not shared by any GANs.

The first GAN generator receives the layout θ(t) and a standard Gaussian
distribution noise as input while the others receive the bilinear upsampled [21]
layout θ(t) and the output of the last refinement layer from the previous GAN.
The discriminators receive an image-layout pair as their inputs. Each pair is
either a real sample or a fake sample. A real sample consists of a real image and
a real layout while a fake one consists of a predicted layout and a generated or
real image. These samples not only encourage the GAN to improve the quality
of generated images but also give the helpful feedback to the layout predictor.

3.3 Loss function

Relation loss Lrel is a cross entropy between relation-units and their GT re-
lations that is obtained by a relation auxiliary classifier. The classifier is built
upon two fully-connected layers producing 512 and |R| outputs. The first layer is
followed by a ReLU layer while the second one ends with the softmax function.

For each edge k of (E,P ), its relation-unit and involved embeddings, i.e.,
e′sk , bs

k, e′ok , and bo
k, are concatenated in this order to have an input vector of

1 × 264. We then feed this vector into the relation auxiliary classifier to obtain
the probability distribution wk of the relations over R. wk is a vector of 1× |R|
and contains all the predicates pk ∈ R. We first obtain the index of predicate pk
∈ R. Since the order of predicates in wk is the same as that in R, the value at
index in wk is the weight of pk, which is used as the weight of the relation-unit
(bs
k, b

o
k) in the individual usage subnet. Note that the weight of a relation-unit

is used for the weight of both bs
k and bo

k involved in the relation-unit.

The relation loss is defined as: Lrel = −
∑|P |
k=1

∑|R|
ν′=1 pk[ν′] log(wk[ν′]). Min-

imizing the relation loss encourages relation-units to adjust their locations and
sizes to meet the “predicate” relation. This is because the relation reflects the
relative spatial locations among its associated relation-units.
Pixel loss: Lpix = ||I − Î||2, where I is the ground-truth image and Î is a
generated image. The Lpix is useful for keeping the quality of generated images.

Contextual loss [22]: Lcontext = − log(CX(Φl(I), Φl(Î))), where Φl(·) denotes
the feature map extracted from layer l of perceptual network Φ, and CX(·) is the
function that computes the similarity between image features. Lcontext is used
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to learn the context of an image since refined BBs may lose the context such as
missing pixel information or the size of entity.
Adversarial loss [4] Ladv encourages the stacking-GANs to generate realistic
images. Since the discriminator also receives the real/predicted layout as its
input, the Ladv is helpful in training the visual-relation layout module as well.

In summary, we jointly train our network in an end-to-end manner to min-
imize: L = λ1Lrel + λ2Lpix + λ3Lcontext +

∑3
i=1 λ4Ladvi, where λi are hyper-

parameters. We compute Ladv at each level in the stacking-GANs, while Lpix

and Lcontext are computed at the third GAN.

4 Experiments

4.1 Dataset and compared methods

Dataset. We conducted experiments on challenging COCO-stuff [13] and Visual
GENOME [14] datasets, which have complex descriptions with many entities and
relations in diverse context. We followed [1] to pre-process all the datasets: |C| =
171 and |R| = 6 (COCO-stuff [13]), and |C| = 178 and |R| = 45 (GENOME [14]).
Compared methods. We employed Johnson+[1] as the baseline (64× 64). To
factor out the influence of image generator, we replaced the CRN in [1] by our
stacking-GANs to produce higher resolution images (128× 128 and 256× 256).
We also compared our method with Hong+[12], Zhang+[6], Xu+[9], Li+[10],
Ashual+[11], Zhao+[16], and Sun+[17]. We reported the results in the original
papers whenever possible. For the methods that released at least one reference
pre-trained model ([23] and [24]), we trained authors’ provided codes (Zhang+[6]
and Xu+[9]) on GENOME dataset.
Evaluation metrics. We use the inception score (IS) [25], and Fréchet in-
ception distance (FID) [26] to evaluate the overall quality of generated images
(implemented in [27,28]). We also use four metrics to evaluate the layout: the
entity recall at IoU threshold (R@τ), the relation IoU (rIoU), the relation score
(RS) [29], and the BB coverage. To evaluate the relevance of generated im-
ages and input text descriptions, we use the image caption metrics: BLEU [30],
METEOR [31], and CIDEr [32]. For the diversity of generated images, we use
the diversity score [33] (implemented in [34]).

To evaluate how much the predicted layout is consistent with the ground-
truth (GT), we measure the agreement in size and location between predicted
(i.e., refined) and GT BBs using the entity recall at IoU threshold: R@τ = |{i |
IoU(B̂i,GTi) ≥ τ}|/N , where B̂i and GTi are predicted and GT BBs for entity

ei, N = min(|{B̂i}|, |{GTi}|) (we always observed |{B̂i}| = |{GTi}|), τ is a
IoU threshold, and IoU(·) denotes Intersection-over-Union metric. Note that we

used only the BBs that exist in both {B̂i} and {GTi} to compute R@τ .
We also evaluate the predicted layout using subject–predicate–object relations.

For each subject–predicate–object relation, we computed the IoU of the predicted
“subject” BB and its corresponding GT, and that for the “object”. We then
multiplied the two IoUs to obtain the IoU for the relation. rIoU is the average
over all the subject–predicate–object relations.
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We use the relation score (RS) [29] for COCO-stuff to evaluate the compliance
of geometrical relation between predicted BBs. For each edge k of scene graph
(E,P ), we define score(B̂s

k, B̂
o
k) = 1 if and only if the relative location between

B̂s
k and B̂o

k satisfies the relation pk, 0 otherwise. RS =
∑|P |
k=1 score(B̂

s
k, B̂

o
k)/|P |.

To evaluate how much BBs cover the area of the whole image, we compute the

coverage of predicted BBs over the image area: coverage =
⋃|E|
i=1 B̂i/(image area).

We note that R@τ and rIoU consider the consistency between predicted BBs
and GT BBs, and RS and coverage are independent of GT BBs. In other words,
R@τ and rIoU evaluate absolute locations of BBs while RS (and coverage as
well to some extent) does semantic relations. Therefore, they together effectively
evaluate the layout in a wide range of aspects.

4.2 Implementation and training details

We optimized our model (built in PyTorch [35]) using the Adam optimizer with
the recommended parameters [36] and the batch size of 16 for 500 epochs. We
used VGG-19 [37] pre-trained on ImageNet as Φ, and l = conv4 2 to compute
Lcontext. Each model took about one week for training on a PC with GTX1080Ti
× 2 while testing time was less than 0.5 second per structured-text input.

We trained the model except for the pre-processing in the end-to-end manner
where we set λ1 = λ2 = λ3 = λ4 = 1, and do not pre-train each individual subset,
meaning that we do not use any ground-truth BBs to train the visual-relation
layout. The layout predictor receives signals not only directly from the relation
loss but also from the other losses. In an early stage of the training, the rendering
part cannot generate reasonable images because the quality of BBs is poor. This
means the signals from losses are strong, leading to quick convergence of the
layout predictor. As the training proceeds, the layout predictor properly works,
and the rendering part gradually becomes better. Lrel, at that time, keeps the
layout predictor stable and more accurate.

4.3 Comparison with state-of-the-arts

Qualitative evaluation. Fig. 4 shows examples of the results obtained by our
method and SOTAs [1,6,9,11] on COCO-stuff [13] and GENOME [14] datasets.
It shows that the generated images by our method successfully preserve the
scene structure given in text descriptions, indicating that our proposed visual-
relation layouts are highly consistent with those of GTs. We see that the results
by Johnson+[1] have reasonable layouts, however, their layouts failed to keep all
relations well and the visual impression of their results is not good. The results
by Zhang+[6] and Xu+[9] are clear in (entities) details but they lose the scene
structure (some entities disappear). The results by Ashual+ [11] (COCO-stuff
only) are more impressive than ours to some extent, however, they use GT layout
and pre-defined entities’ appearances.
Quantitative evaluation. We classify all the compared methods into three:
(A) Johnson+ [1], Hong+[12], Li+[10], and Ashual+[11] (which firstly infer a
layout and then convert it to an image), (B) Zhang+[6] and Xu+[9] (which
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(a) COCO-stuff dataset [13].

(b) GENOME dataset. [14]

Fig. 4: Visual comparison on COCO-stuff and GENOME. For each example,
we show the scene graph and reference image at the first row. From second
to the last rows, we show the layouts and images generated by our method
(256× 256), Johnson+[1] (64× 64), Zhang+[6] (256× 256), Xu+[9] (256× 256),
and Ashual+[11] (256 × 256, COCO-stuff only, GT layout). The color of each
entity BB corresponds to that in the scene graph. Zoom in for best view.

are directly conditioned on texts), and (C) Zhao+[16] and Sun+[17] (which are
directly conditioned on ground-truth layouts).
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Table 1: Comparison of the overall quality using IS and FID. From the 4th
to the 16th rows: group (A) and (B) (the best in blue; the second best in red).
From the 17th to the 19th rows: group (C) (bold indicates the best). Scores
inside the parentheses indicate those reported in the original papers.

IS ⇑ FID ⇓

Dataset COCO-stuff [13] GENOME [14] COCO-stuff [13] GENOME [14]

Image size 64× 64 128× 128 256× 256 64× 64 128× 128 256× 256 64× 64 128× 128 256× 256 64× 64 128× 128 256× 256

Ours w/o individual usage 7.02±0.19 8.12±0.41 9.95±0.31 5.48±0.16 5.66±0.26 5.91±0.41 63.28 59.52 55.21 72.42 72.02 71.49
Ours w/o weighted unification 7.10±0.27 8.64±0.37 10.49±0.41 5.99±0.22 6.61±0.31 7.32±0.37 61.89 57.20 49.16 69.37 60.89 57.18
Ours w/o refinedBB2layout 7.23±0.20 8.70±0.35 10.50±0.37 6.11±0.25 6.93±0.29 7.87±0.33 57.68 53.81 46.55 67.65 58.54 54.45

Ours w/o Lpix 7.29±0.17 9.26±0.31 11.36±0.40 6.05±0.15 8.26±0.27 8.66±0.36 56.81 51.02 43.18 70.18 60.02 58.63
Ours w/o Lcontext 7.56±0.11 9.68±0.33 11.47±0.42 6.37±0.16 8.41±0.22 8.97±0.31 50.89 47.22 40.10 68.20 56.39 53.75
Ours w/o Ladv 7.31±0.19 9.47±0.34 11.41±0.47 6.30±0.19 8.39±0.20 8.96±0.39 56.24 50.87 41.05 68.34 57.23 53.86
Ours (completed model) 9.20±0.32 12.01±0.40 14.20±0.45 7.97±0.30 9.24±0.41 11.75±0.43 35.12 29.12 27.39 58.37 50.19 36.79

Johnson+ [1] (6.70±0.10) 7.13±0.24 7.25±0.47 (5.50±0.10) 5.72±0.33 5.81±0.37 67.99 65.23 64.19 73.39 69.48 68.42
Hong+ [12] — (11.46±0.09) — — — — — — — — — —
Li+ [10] (9.40±0.20) — — (7.30±0.20) — — — — — — — —
Ashual+ [11] (7.90±0.20) (10.40±0.40) (14.50±0.70) — — — (65.30) (75.40) (81.00) — — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zhang+ [6] 7.79±0.32 8.49±0.52 (10.62±0.19) 6.35±0.16 6.44±0.25 7.39±0.38 87.21 85.37 78.19 108.68 86.17 77.95
Xu+ [9] 11.78±0.14 19.11±0.28 (25.89±0.47) 6.38±0.22 6.88±0.32 8.20±0.35 50.06 43.98 34.48 96.40 83.39 72.11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ours with GT layout 10.36±0.41 13.73±0.59 14.78±0.65 8.87±0.57 10.04±0.45 12.03±0.37 30.98 27.74 26.32 45.63 40.96 27.33
Zhao+ [16] (GT layout) (9.10±0.10) — — (8.10±0.10) — — — — — — — —
Sun+ [17] (GT layout) (9.80±0.20) (13.80±0.40) — (8.70±0.40) (11.10±0.60) — (34.31) (29.65) — (34.75) (29.36) —

GT 16.25±0.38 25.89±0.47 32.61±0.69 13.92±0.42 21.43±1.03 31.22±0.65 — — — — — –

Table 2: Comparison of the scene structure using R@τ , rIoU , RS, and coverage
(larger is better; the best in bold).
Dataset COCO-stuff [13] GENOME [2]

Metric R@τ rIoU RS coverage R@τ rIoU coverage

0.3 0.5 0.7 0.9 GT=98.24 0.3 0.5 0.7 0.9 GT=77.10

Ours w/o individual usage 61.45 43.22 29.71 20.05 0.2652 53.48 94.96 26.48 14.29 11.90 9.81 0.1264 50.07
Ours w/o weighted unification 61.76 45.28 30.22 20.51 0.2795 56.27 95.07 29.57 18.22 13.76 10.80 0.1501 56.77
Ours (completed model) 65.34 49.01 35.87 23.61 0.3186 68.23 97.19 35.00 23.12 16.34 13.40 0.1847 71.13

Johnson+ [1] 59.75 42.53 29.23 19.89 0.2532 51.20 94.82 28.13 17.17 12.30 10.47 0.1485 52.28
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zhang+ [6] 37.81 20.50 10.64 7.76 0.0824 30.72 60.15 18.38 10.84 8.11 5.82 0.0643 40.07
Xu+ [9] 21.39 10.71 8.15 5.83 0.0671 31.97 52.76 16.02 9.33 7.66 5.15 0.0579 36.82

Table 1 shows that our method (almost) outperforms (A) in IS and FID on
both COCO-stuff and GENOME. In comparison with (B), our method achieves
the best in FID on both the datasets, the best on GENOME and the second
best on COCO-stuff in IS. Xu+[9] achieves better IS on COCO-stuff than
us because (i) Xu+[9] focuses on generating images in good human perception
based on entity information and (ii) COCO-stuff has less complex relations,
in other words, layouts may be less important. On GENOME, however, text
descriptions are more complex with many entities and relations, and their results
are degraded due to poor layouts as seen later in Table 2. Table 1 also shows that
the scores of our completed model are comparable to those of (C), meaning that
our (predicted) visual-relation layout is close to the GT layout. When replacing
the predicted layout by the GT (the 17th row), our results achieve the same level
with (C). We thus conclude that our method is more effective than the others.

Next, we evaluated how the scene structure given in input text was preserved
in generated images using R@τ (we changed τ from 0.3 to 0.9 by 0.2), rIoU , RS,
and coverage, see Table 2. We remark that we computed RS only for COCO-stuff
because COCO-stuff has geometrical relations only. For Zhang+[6] and Xu+[9],
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Table 3: Comparison using caption gen-
eration metrics on COCO-stuff (larger
is better; the best in blue). Scores inside
the parentheses indicate those reported
in [12].
Method BLEU − 1 BLEU − 2 BLEU − 3 BLEU − 4 METEOR CIDEr

Ours 0.561 0.352 0.217 0.139 0.157 0.325

Johnson+ [1] 0.531 0.321 0.183 0.107 0.141 0.238
Hong+ [12] (0.541) (0.332) (0.199) (0.122) (0.154) (0.367)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zhang+ [6] 0.417 0.214 0.111 0.062 0.095 0.078
Xu+ [9] 0.450 0.251 0.157 0.087 0.105 0.251

GT 0.627 0.434 0.287 0.191 0.191 0.367
(0.678) (0.496) (0.349) (0.243) (0.228) (0.802)

Table 4: Comparison using diversity
score [33] (the best in blue; the sec-
ond best in red). Scores are inside
the parentheses indicates those in
the original papers.

Method COCO-stuff [13] GENOME [2]

Ours (64× 64) 0.36±0.10 0.39±0.09
Ours (128× 128) 0.45±0.12 0.49±0.07
Ours (256× 256) 0.52±0.09 0.56±0.06

Johnson+ [1] 0.29±0.10 0.31±0.08
Ashual+ [11] (0.67±0.05) —
Zhao+ [16] (0.15±0.06) (0.17±0.09)
Sun+ [17] (0.40±0.09) (0.43±0.09)

we employed Faster-RCNN [38] to estimate their predicted BBs of entities where
we set the number of generated BBs to be the number of entities in an image.
We note that the number of predicted BBs by ours or Johnson+[1] was always
the same with the number of entities in an image.

Table 2 shows that our method performs best, indicating that our predicted
BBs more precisely agree with those in relation (location and size) of entities
given in texts than the compared methods. To be more specific, rIoU ’s in Table 2
show that our predicted BBs more successfully retain the relations of entities
than the other methods. This observation is also supported by RS on COCO-
stuff. Moreover, our method outperforms the others in coverage and achieves
comparable levels with the ground-truth BBs. These indicate that our visual-
relation layout is well-structured. Our method thus has even better ability of
rendering more realistic images with multiple entities since the faithful scene
structure and more BB coverage (i.e., entity information) are achieved. Note
that the observation that the coverage’s on COCO-stuff are better than those
on GENOME explains the reason why generated images on COCO-stuff are
better in IS and FID than those on GENOME.

Next, we use the image caption task to evaluate how the generated image is
relevant to its input text. We follow [12] to report scores on COCO-stuff [13], see
Table 3. Note that we evaluated on COCO-stuff only since the pre-trained image
caption model on GENOME is not available. We also note that all the scores
on the ground-truth dataset in [12] are higher than our re-computation. Table 3
shows that our method outperforms the others [1,6,9,12] on BLEU , METEOR
and comparable to [12] on CIDEr. We thus conclude that our method performs
more consistently with input texts than the others.

Finally, we show the diversity score of generated images in Table 4. Over-
all, our scores are higher than Johnson+[1], Zhao+[16], and Sun+[17] on both
COCO-stuff and GENOME, and comparable to Ashual+[11] on COCO-stuff.
Moreover, along with our stacking-GANs, our scores become better and better.
These scores also support the efficacy of our method.

We note that the number of (trainable) parameters in our model is about 41M
which is comparable with Johnson+[1] (28M), Zhang+[6] (57M), and Xu+[9]
(23M), and significantly smaller than Ashual+[11] (191M).
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Model w/o 

individual usage

Model w/o 

weighted unification 

Completed modelModel w/o 

RefinedBB2layout

Reference layout 

and image

Scene graph

Comprehensive    

Individual ()  

RefinedBB2layout   

Fig. 5: Example of layouts and generated images by the ablation models. For
each model, the 1st row shows the layout, the 2nd row shows the generated
image. All images are at 256× 256 resolution.

4.4 Ablation study

We evaluated ablation models, see the first block of Tables 1 and 2: ours w/o
individual usage denotes the model dropping the individual usage subnet; ours
w/o weighted unification denotes the replacement of refining BBs with just av-
eraging in the individual usage subnet; ours w/o refinedBB2layout denotes the
replacement by just putting all entity layouts together in constructing the visual-
relation layout. Fig. 5 illustrates a typical output example of the ablation mod-
els. We note that model w/o comprehensive usage is not applicable since all
the other subnets in our visual-relation layout module need the output by the
comprehensive usage subnet.

The 4th and 5th rows of Tables 1 and 2 confirm the importance of the
individual usage subnet. We also see the necessity of our learnable weights in
refining BBs because model w/o weighted unification performs better than model
w/o individual usage. We may conclude that the relation-unit prediction and the
weighted unification together bring gain to our performance.

From Fig. 5, we visually observe that the layout by the model w/o individual
usage does not successfully reflect relations. This observation is applicable to the
model w/o weighted unification as well. As a result, both the models generated
images in poorer quality than our complete model. The relation-units are in
diversity: entity BBs can be various in size and location because of multiple
relations (see Fig. 6, for example), and thus simply averaging BBs corresponding
to the same entity does not successfully retain the entity relations. The individual
usage of relations is important for more consistent layout with input text.

The 6th row in Table 1 shows the significance of the refinedBB2layout. Com-
plex descriptions with many entities and relations tend to produce overlapped
BBs. The model w/o refinedBB2layout cannot necessarily produce all the entities
in the layout, generating poor images.

We also evaluated the necessity of each term of the loss function through
comparing our completed model with models dropping one term each: model
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Relation-units

Scene graph cow-by-cow cow-eating-grass cow-standing on-

field

cow-eating-grasscow-standing on-

field

cloud-in-sky

tree-on-field Model w/o 

weighted 

unification

Completed 

model

Reference 

layout and 

imageInitial BBs

Fig. 6: Example of relation-units in the individual usage subnet; layouts and
generated images by model w/o weighted unification and completed model.

Fig. 7: Example of output along with the stacking-GANs. From left to right,
scene graph, visual-relation layout, the outputs at 64× 64, 128× 128, 256× 256
resolutions, and the reference image.

w/o Lpix, model w/o Lcontext, and model w/o Ladv (we dropped each term in
the loss function (Sec. 3.3) except for stacking-GANs). From the 2nd block of
Table 1, we see that the absence of any term degrades the quality of generated
images. This indicates that all the loss terms indeed contribute to performance.

Finally, we see that along with the stacking of GANs, our method progres-
sively generates better images in terms of IS and FID (Table 1). We observe
that at 64 × 64 resolution, generated images tend to be blurred and lose some
details while the details of images are improved as the resolution becomes higher
(the best result is obtained at 256× 256 resolution) (see Fig. 7 as an example).
We also confirmed that the visual-relation layouts of generated images at any
resolutions are the same and highly consistent with texts.

When we replaced CRN in [1] with our stacking-GANs for 128 × 128 and
256×256 resolutions to factor out the influence of image generators, we see that
the improvement of [1] on IS and FID along the resolution is worse than that
of our model (the 10th and the 11th rows of Table 1). This indicates that better
layout significantly improves the performance of the final image generation and
also confirms clearer contribution of our proposed visual-relation layout module.

5 Conclusion

We proposed a GAN-based end-to-end network for text-to-image generation
where entity relations are comprehensively and individually used to infer a visual-
relation layout. We also conditioned the stacking-GANs on the visual-relation
layout to generate high-resolution images. Our layout preserves the scene struc-
ture more precisely than the layout by SOTAs.
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