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Abstract—We present an approach for the detection of build-
ings in multispectral satellite images. Unlike 3-channel RGB
images, satellite imagery contains additional channels correspond-
ing to different wavelengths. Approaches that do not use all
channels are unable to fully exploit these images for optimal
performance. Furthermore, care must be taken due to the large
bias in classes, e.g., most of the Earth is covered in water and
thus it will be dominant in the images. Our approach consists of
training a Convolutional Neural Network (CNN) from scratch to
classify multispectral image patches taken by satellites as whether
or not they belong to a class of buildings. We then adapt the clas-
sification network to detection by converting the fully-connected
layers of the network to convolutional layers, which allows the
network to process images of any resolution. The dataset bias is
compensated by subsampling negatives and tuning the detection
threshold for optimal performance. We have constructed a new
dataset using images from the Landsat 8 satellite for detecting
solar power plants and show our approach is able to significantly
outperform the state-of-the-art. Furthermore, we provide an in-
depth evaluation of the seven different spectral bands provided
by the satellite images and show it is critical to combine them
to obtain good results.

I. INTRODUCTION

Everyday, dozens of satellites meticulously take large
amounts of images of the Earth’s surface. These images contain
a large amount of information and have many applications such
as land-use analysis, map making, and contingency planning
against disaster. The vast amount of data that is provided daily
exceeds the possibility of manual analysis: it is only possible
to process this data by semi-automated and fully-automated
tools. In this work we present an approach for training and
employing a Convolutional Neural Network (CNN) for object
detection in satellite imagery.

Our approach consists of training a CNN using image patches
for classification of whether or not the image patch contains part
of the building type we want to localize. Afterwards we convert
the fully-connected layers to convolutional layers to be able
to process images of arbitrary resolutions [1]. The resulting
network can be used to detect buildings directly in satellite
images in near real-time.

One of the more significant properties of satellite imagery
is that, in general, satellite images contain more spectral
information than standard RGB images. In particular, spectral
bands that are not visible to the human eye such as infrared
bands are also used. All these bands are represented as different
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Fig. 1: Example result of the proposed method. We are able to
train our CNN for classification and then apply it to detection
by adopting the fully-convolutional layers. While these images
are multispectral, we only show the RGB channels.

channels of the input image. Thus, instead of 3-channel RGB
images, it is common to work with images with more channels
corresponding to different wavelengths. Objects that are hard
to distinguish with the standard RGB channels might be easier
to discern using the additional wavelengths. In particular, we
consider 7-channel images as input.

In this work, we focus on the detection of solar power
plants, which play a fundamental role in energy planning as
a renewable energy. Photovoltaic installations are expected to
surpass 310 gigawatts worldwide by the end of 2016, while only
40 gigawatts were installed at the end of 2010 [2]. Detecting
solar power plants enables us to estimate energy productions
and use this to assist landscape planning. Furthermore, as solar
power plants require direct light, they are generally fully visible
from satellite imaging, which allows for the robust evaluation
of our approach.

We build a dataset for the detection of solar power plants
using the Landsat 8, one of the latest Earth observation satellites,
which observes the whole surface of the Earth with a 16-day
repeat cycle [3]. Each image has 7 channels corresponding
to different wavelengths, with half corresponding to the non-
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visible infra-red spectrum. The resolution is of roughly 30
meters per pixel. We use a database of existing solar power
plants to annotate the images.

In summary, we present a new dataset for the detection of
power plants in multispectral satellite imagery, and an approach
to learn models for detection by training for classification that is
able to significantly outperform the state-of-the-art on the task.
We additionally provide extensive results on the contribution
of each of the spectrum for the task.

II. RELATED WORK

In the last few years, the field of image classification has
come to be dominated by CNN [4], [5], which are significantly
outperforming traditional methods [6]. While the focus of the
work was classifying images, it was later extended to detection
by combining region proposals with classification networks [7].
CNN have also been used for small image patches [8], and
fully convolutional networks that are able to process images of
any resolution have been recently been proposed [1], [9], [10].
In one approach, a classification network has been adapted
to perform semantic segmentation [1] by converting the fully-
connected layers to convolutional layers. We use this adaptation
in our approach. However, unlike Long et al. [1], we do not
use off-the-shelf classification networks since we deal with
multispectral image inputs, and we do not finetune in the
segmentation stage due to the bias in classes in our dataset.

CNNs have also been used in remote sensing. Minh and
Hinton [11] created synthetic data from vector road maps to
train a CNN for road detection. Our work is different in that we
exploit multispectral images and that they rely on a large pixel-
accurate dataset, which is not available in our case. Castelluccio
et al. [12] explored the use of CNNs for multi-class image
classification in aerial images using existing CNN models, e.g.,
CaffeNet [13]. Penatti et al. [14] evaluated the performance of
feature descriptors based on existing CNNs in aerial and remote
sensing image classification. They showed that CNNs obtain
the best performance for both aerial and remote sensing images.
However, these methods rely on existing networks that are
designed to process 3-channel images, unlike the images with
multiple spectral bands we consider. By training an architecture
from scratch, we are able to exploit all input channels which
is important for classification as shown in Fig. 2. Additionally,
we adapt our network trained for classification to detection
and are able to efficiently process high resolution images.

III. MEGASOLAR DATASET

We build a dataset by using the publicly available multi-
spectral images taken by the Landsat 8 satellite and annotating
them with the location of MegaSolar solar power plants, taken
from a public database. As there is a time lapse between the
images and the power plant database, in addition to the fact
that the database is not exhaustive, we take care in creating
a set of positive and negative examples that can be used for
training. This is critical for performance, as there is a large
bias between positive and negative examples in the dataset.
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Fig. 2: Comparison of multispectral signals in an example Land-
sat 8 satellite image. Comparing two pixels corresponding to a
megasolar solar power plant and forest, we can see that both
pixels have nearly the same value in most channels. However,
channel 5, corresponding to the 0.85-0.88μm wavelength, is
significantly different. Thus, by exploiting all the channels, we
are able to distinguish areas that would not be distinguishable
by RGB information only. Bands 2, 3, and 4 are colored for
ease of understanding.

TABLE I: Wavelengths observed by the Landsat 8 satellite.
OLI corresponds to visible and near-infrared light, while TIRS
corresponds to thermal infrared light. Bands 2, 3, and 4
correspond to the standard B, G, and R channels, respectively.

Sensor Band Wavelength [μm] Resolution [m]

OLI 1 0.43–0.45 30
2 (B) 0.45–0.51 30
3 (G) 0.53–0.59 30
4 (R) 0.64–0.67 30

5 0.85–0.88 30
6 1.57–1.65 30
7 2.11–2.29 30
8 0.53–0.68 15
9 1.36–1.38 30

TIRS 10 10.60–11.19 100
11 11.50–12.51 100

A. Landsat 8 Satellite Imagery

The Landsat 8 Satellite is a new Earth observation satellite
that has been operating since 2013. It observes the whole
surface of the Earth on a 16-day repeat cycle using 11 different
bands with different wavelengths and spatial resolutions. An
overview of satellite’s imaging equipment can be seen in Table I.
Of these bands, we use the first seven as they share a common
resolution and have mostly no overlap. For our dataset, we
use 20 satellite images of Japan taken in 2015. Each image
captures roughly an area of 170km× 183km. Example images
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TABLE II: Proposed model architecture. The model consists of
three convolutions with Rectified Linear Unit (ReLU) transfer
functions, followed by a single fully-connected layer. Note that
as we use the negative log-likelihood loss, softmax transfer
function is applied on the final layer.

layer kernel size output size transfer function

input - 7× 16× 16 -
convolution 3× 3 32× 14× 14 ReLU
convolution 3× 3 32× 12× 12 ReLU
convolution 3× 3 32× 10× 10 ReLU

fully connected - 2 softmax

are shown in Fig. 1.
In order to train for classification, we divide each of the

image into cells of 16 × 16 pixels and treat each cell as an
image patch which is used for the input. Note that, despite
being seemingly small, each cell covers an area of about 480m2.
The cells will be then annotated, as we explain next.

B. MegaSolar Power Plants

We use the database maintained by Electrical Japan1 to
obtain the location of solar power plants. Due to the coarse
resolution of the satellite imagery, and the fact that smaller
plants are too numerous for manual annotation, we use only
the power plants with an output greater than 5MW for positive
samples. Each such plant is manually annotated in the satellite
image with a polygon. Then, cells with more than 20% of
the pixels covered by the polygon are considered positives,
while those without a single pixel belonging to a power plant
are considered negatives, except those that fall within 480m
(16 pixel) radius of plants with under 5MW output, since
the smaller power plants tend to make the negative samples
ambiguous. Unlike the annotation, this removal can be done
automatically. This results in a total of 426 positive cells and
3,210,627 negative cells. Note that there are 7,537 times more
negative examples than positive examples. We will take this
into account when training our model.

IV. METHOD

We train a CNN from scratch for classification. This allows
the model to process multispectral input images. We then adapt
it for detection by converting the fully-connected layers to
convolutional layers. This allows near real-time processing of
high resolution satellite images.

A. Model Architecture

Our model consists of three convolutional layers with a fully-
connected layer as shown in Table II. We use Rectified Linear
Unit (ReLU) transfer functions after each of the convolutional
layers. The convolutional layers all use 3× 3 kernels and no
padding. Unlike most standard models, we do not use any
pooling; and all convolutions have a stride of one. This is due
to the small size of the input images. Additionally, note that
the input has 7 channels, corresponding to the first seven bands

1http://agora.ex.nii.ac.jp/earthquake/201103-eastjapan/energy/electrical-
japan/, in Japanese only

from Table I. By exploiting more information in the input, it
is possible to keep the number of layers low, which allows
processing high resolution images in near real-time.

B. Training for Classification

We train our model for classification by our dataset of 16×
16 pixel image patches with their corresponding annotations
using a negative log-likelihood loss. In order to efficiently
learn from scratch, we use Batch Normalization layers [15]
after each convolution and before the corresponding ReLU
transfer function. Note that these layers are only necessary for
training. When evaluating, they can be reduced into a fixed
linear transformation, which can be “folded” into the previous
convolutional layer, thus adding no additional overhead. We
also add a DropOut layer [16] that sets the output pixels to
0 with 50% possibility after the third convolutional layer and
before the fully-connected layer. This reduces the overfitting
of the model to the training data.

Due to the large bias between the positives and the negatives,
we both augment the number of the positives and decrease the
number of the negatives for training. As the grid cells are non-
overlapping, we consider all possible grids when computing
the positives, i.e., we consider all 16× 16 image patches with
at least 20% of the pixels belonging to a solar power plant as
positives. In contrast, the negatives are computed using a single
grid. This allows roughly 16-fold increase in the number of
positives. For the negatives, we perform random subsampling to
reduce them to roughly 14% of the original amount. Both these
modifications allow reducing the gap between the positives
and the negatives such that there are only 67 times more
negatives than positives, i.e., over a 100 times reduction in
the gap between negatives and positives. Note that this is only
done for the training data: we use all the cells for both the
validation and testing data. We further augment the data by
randomly flipping all images both horizontally and vertically
during training.

Despite augmenting the positive samples and decreasing
the negative samples of the training set, there is still a large
remaining bias between positives and negatives. Once a model
is trained, in order to further reduce the effect of this bias, we
use the validation set to determine the optimal classification
threshold. As we will show, using the default threshold of 0.5
leads to high recall, but low precision and intersection-over-
union values. Tuning the threshold is critical to increase both
the precision and the intersection over union.

In summary, by reducing the dataset bias, accelerating
the training, and reducing the overfitting, we are able to
train models quickly and efficiently for high performance
classification of power plants from image patches. Once the
model is trained, by tuning the threshold, we are able to
further overcome the dataset bias and significantly increase
performance.

C. Adaptation to Detection

Inspired by Long et al. [1], we convert our trained classifica-
tion network to a fully-convolutional network by reinterpreting
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Fig. 3: The detector derived from our proposed model. The model is originally trained with a fully-connected layer for
classification. The fully-connected layer can then be reinterpreted as a convolutional layer, which allows converting our model
to a fully-convolutional one that can process images of any size. The resulting model outputs a probability map that is the size
of the input image minus 15 pixels, as we do not use padding for the convolutional layers.

TABLE III: Details of the train, validation, and test split of
the MegaSolar dataset. For each split, we note the number of
positive samples P and the number of negative samples N .

Dataset # of cells

original training P ∗
train 300

N∗
train 2,247,428

augmented training Ptrain 4,851
Ntrain 320,000

validation Pval 21
Nval 160,533

testing Ptest 105
Ntest 802,666

the fully-connected layer as a convolutional layer. In the case
of our proposed model, this simply consists of converting
the last layer to a convolution with a 10 × 10 pixel kernel.
The new model, in the case of a 7 × 16 × 16 input image,
will output a 2 × 1 × 1 image instead of a 2-dimensional
vector. Extrapolating this to 7 × W × H input images, the
output will be a 2 × (W − 15) × (H − 15) image that can
be interpreted as a probability map, due to the last softmax
transfer function, as shown in Fig. 3. This map can be used
directly for detections and the entire approach can be computed
in a single forward pass on an image, in contrast to approaches
that require bounding box proposals such as R-CNN [7].

V. RESULTS

For evaluation, we split the MegaSolar dataset into three
sets: train, validation, and test, so that each power plant is fully
contained in either the train and validation sets, or the test set.
All sets consist of a number of 16 × 16 pixel multispectral
images with their associated label, i.e., positive or negative.
We use a 70:5:25 ratio for training, validation and testing
respectively. The training set is also augmented in order to
reduce the gap between the positives and the negatives during
training. All methods are trained on the augmented training

set, validated on the validation set, and tested on the test set.
An overview of the different sets is shown in Table III.

A. Comparison with the State-of-the-Art

We compare against the state-of-the-art approach for recog-
nition in aerial images by Penatti et al. [14]. It consists of
using the pre-trained CaffeNet [17] and replacing the last two
layers with a single layer for two-way classification. Instead
of using the standard RGB channels for input, they use bands
5, 6, and 7. Finally, the whole network is fine-tuned for the
task, which in this case is classification of solar power plants.
As done in [14], the input images are enlarged to be able to
be inputted to the network by the bicubic interpolation.

We also provide a comparison with an non-linear SVM using
RBF kernels as a baseline. The SVM is trained on vectorized
images using the first seven channels like our approach. The
SVM hyperparameters are determined by using grid search on
the validation set.
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Fig. 4: Comparison against the state-of-the-art for the classifi-
cation of solar power plants. We compare our best performing
method against Penatti et al. [14] and a RBF-kernel SVM
baseline. Our method significantly outperforms the other
methods.

The comparison against the state-of-the-art can be seen in
Fig. 4. We evaluate using the intersection over union metric on
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Fig. 5: Tuning the classification threshold hyperparameter. We
show the results of changing the threshold on the train set.
Note that we chose the best performing value on the validation
set, which is close to the best on the test set, and highlighted
in red. Intersection over union increases by nearly 20% due to
the tuning of the threshold.

the test set for the SVM baseline, the state-of-the-art Penatti et
al. [14], and our best performing model. For a fair comparison,
we tune the classification threshold for all approaches on
the validation set. We can see that the proposed significantly
outperform both the baseline and the approach of Penatti et
al. [14], despite training our model entirely from scratch.

B. Tuning the Classification Threshold

Due to the dataset bias, we tune the classification threshold
of our model and show its effect in Fig. 5. This threshold
plays a critical role when the dataset has a heavy positive-
negative bias such as the one we use in this work, increasing
performance by nearly 20% intersection over union.

C. Importance of Spectral Bands

We perform an analysis of the different bands to investigate
their contributions to the final classification results. We compare
using single bands, triplets of bands (including RGB), leaving a
band out, and using all the bands. Results are shown in Fig. 6.
We can see that using single bands leads to no performance.
Using triplets of bands can already lead to high performance.
In particular, it seems that the bands (5,6, and 7) used by
Penatti et al. give the highest performance triplet. However,
there is still performance to be gained by using all the bands.
When leaving a band out, band 6 seems to give the largest
performance drop, followed by band 7. Other bands such as 2
(corresponding to the blue channel), seem to give no change in
result. In general, it seems as if the best approach is to give as
much input data as possible and with training let the network
figure out the best combination of channels.

D. Detection Results

We show results of adapting our classification network to
detection in Fig. 7. It is able to detect all the power plants
with over 5MW output successfully. Most of the smaller power
plants are also detected, despite not being used in training,
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(a) Comparison of single spectrum and triplets.
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(b) Leave-one-out evaluation of spectral bands.

Fig. 6: Comparison of using different spectral bands as input of
our model. We look at both the effect of using single bands and
triplets of bands, and removing bands from our full model to
see the contribution of the different bands. In general, upplying
all the bands to the model gives the best performance.

TABLE IV: Computation time for detection on large images.

Input size (px) CPU (s) GPU (s)

512× 512 1.772 0.024
1024× 1024 7.434 0.098
2048× 2048 29.886 0.395

showing how our approach generalizes to most solar power
plants just from learning from the larger solar plants.

E. Computation Time

We benchmark the network for classification of large images.
In general, satellite images are of very high resolution. We
show results in Table IV and can see that our approach can
process large 2048×2048 pixel images in well under a second
with a Titan X GPU.

VI. CONCLUSIONS

In this paper, we have presented an approach for learning to
classify and detect objects in satellite images. Our approach is
able to exploit multiple spectral bands which are common in
satellite imagery, and we are able to cope with the dataset bias
intrinsic to aerial detection tasks. We present a new dataset
for the detection of solar power plants in multispectral images
to evaluate our approach, although it can be applied to detect
any type of building. Evaluation shows that our approach
significantly outperforms the current state-of-the-art in aerial
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Fig. 7: Detection results for our appreach. Detection regions are highlighted. The solar power plants with more than 5MW
output are enclosed by red polygons, while the smaller powerplants are denoted by a green circle with a radius of 480m.

image classification. Furthermore, we are able to adapt our
classification network to detection and show that it can be
used for processing large satellite images in near-realtime with
accurate results.
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