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Abstract. This paper deals with the problem of fitting a discrete poly-
nomial curve to 2D noisy data. We use a discrete polynomial curve model
achieving connectivity in the discrete space. We formulate the fitting as
the problem to find parameters of this model maximizing the number of
inliers i.e., data points contained in the discrete polynomial curve. We
propose a method guaranteeing inclusion-wise maximality of its obtained
inlier set.

1 Introduction

Curve fitting to noisy data (i.e., containing outliers) is an essential task in many
applications such as object recognition, image segmentation and shape approxi-
mation. Continuous curve models have been used for fitting in most cases even
though data dealt with in a computer are discrete.

The method most commonly used for continuous curve fitting in the presence
of noise is RANdom SAmple Consensus (RANSAC) [1], which uses random
sampling to estimate model parameters, and then choose the ones having the
largest number of inliers, i.e., data points explained by the parameters. For its
robustness and simplicity, RANSAC is used in a wide range of problems in
computer vision. The main drawback of RANSAC (and most of its variants) is
however that it does not guarantee any deterministic properties on its output.
It also requires an empirical error threshold to define an inlier, which affects the
output. Another popular approach for the task is to use the Hough transform
[2,3], which allows to find model parameters consistent with many data points in
the space of the model parameters. This method however requires to manually
set the resolution to discretize the parameter space, which affects the output.

As long as a continuous curve model is fitted to discrete data, an error thresh-
old is required to determine if a data point is explained by the model. By using
a discrete curve model, on the other hand, we can define an inlier without an
empirical error threshold. A discrete curve model is defined as a set of discrete
points to represent a discretized curve. For curve discretization, it has been con-
sidered to be important to preserve the topological properties (e.g., connectivity)
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of an original curve [4–9]. For example, a Jordan curve (i.e., simple closed curve)
in a 2D image allows to partition the image into two connected regions. Such
a property is useful in computer graphics, computer vision and image process-
ing (see [10]), and therefore should be preserved in discretization. Based on the
idea, several discrete curve models have been developed [11–16] to achieve some
consistent topological properties in the discrete space. It is therefore preferable
to use such a model for curve fitting.

Curve fitting to noisy data in 2D has been studied for discrete lines [17–20],
discrete circles [21–24] and discrete polynomial curves [25]. For lines and circles,
models having connectivity have been used. For polynomial curves, on the other
hand, only one type of discrete polynomial curve model without guaranteeing any
topological property has been used. Discrete polynomial curve fitting therefore
has yet to be studied for a model having consistent topological properties.

In this paper we deal with the problem of fitting a discrete polynomial curve
to 2D noisy data. We use the discrete curve model introduced by Toutant et al.
[16] to define our discrete polynomial curve. This is because this model guar-
antees connectivity in the discrete space [26], and is closely related to the mor-
phological discretization [27–29]. To be precise, this model corresponds to the
morphological discretization with a structuring element called the k-adjacency
flake [15], which is defined for k = 0, 1 in 2D and achieves different topological
properties depending on k. Note that in this paper we limit ourselves to define
our discrete polynomial curve only for k = 0. We formulate our problem as to
find parameters of this model that maximize the number of inliers, where an
inlier is defined as a point contained in the discrete polynomial curve.

We propose for this problem a method guaranteeing inclusion-wise maximal-
ity of its obtained inlier set (i.e., there exists no larger inlier set in the sense of
set inclusion). Note that an inclusion-wise maximal inlier set does not necessar-
ily have the maximum cardinality. Our method runs in the space of parameters
(coefficients) of the discrete polynomial curve model. In the parameter space a
discrete polynomial curve is represented by a point, while a data point or a set
of data points gives a feasible region shaped like a polytope where any discrete
polynomial curve represented by a point in the region contains the data point(s).
Given any initial inlier set, the method adds new data points to the inlier set one
by one with tracking its feasible region in the parameter space, until inclusion-
wise maximality is achieved. The feasible region is generally an infinite set so
that it is impossible to store all its points in a computer. We solve this problem
by focusing only on a finite number of points corresponding to the notion of the
vertices of a polytope. Our method thus does not require any discretization of
the parameter space, which is a major difference from the Hough transform.

2 Problem Formulation

A continuous polynomial curve of degree d in the xy-plane is represented by
y −∑d

l=0 alx
l = 0 with coefficients a0, . . . , ad−1 ∈ R and ad ∈ R \ {0}. Toutant

et al. [16] introduced its discretized form in Z
2, i.e., a discrete polynomial curve

D (a0, . . . ad) by
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Fig. 1. Discrete polynomial curve. (a) shows D (a0, . . . , ad) (red integer points) for
d = 2 and (a0, a1, a2) = (2.5, −2.25, 0.5) with its continuous counterpart (depicted in
black). For (i, j) ∈ Z

2 and s ∈ {1, . . . , 4}, (i + xs, j + ys) is depicted in green, purple or
yellow: green if (j + ys)−∑d

l=0 al (i + xs)
l > 0; purple if (j + ys)−∑d

l=0 al (i + xs)
l <

0; yellow if (j + ys) − ∑d
l=0 al (i + xs)

l = 0. (i, j) ∈ Z
2 is in D (a0, . . . , ad) if{

(i + xs, j + ys)
∣
∣ s = 1, . . . , 4

}
contains green and purple points, or an yellow point.

In (b), (xs, ys) is depicted in red for s = 1, . . . , 4. (Color figure online)

D (a0, . . . , ad) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i, j) ∈ Z
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

min
s∈{1,...,4}

[

(j + ys) −
d∑

l=0

al (i + xs)
l

]

≤ 0 ≤

max
s∈{1,...,4}

[

(j + ys) −
d∑

l=0

al (i + xs)
l

]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (1)

where (x1, y1) =
(− 1

2 ,− 1
2

)
, (x2, y2) =

(
1
2 ,− 1

2

)
, (x3, y3) =

(
1
2 , 1

2

)
and (x4, y4) =(− 1

2 , 1
2

)
. See Fig. 1 for an illustration of D (a0, . . . , ad).

Let P =
{
(ip, jp) ∈ Z

2
∣
∣ p = 1, . . . , n

}
be a finite set (i.e., n < ∞) of integer

points (data). For a discrete polynomial curve D (a0, . . . , ad), a point (ip, jp)
(p = 1, . . . , n) is called an inlier if (ip, jp) ∈ D (a0, . . . , ad), while otherwise it is
called an outlier. Our goal is to find D (a0, . . . , ad) that maximizes the number of
inliers for given data P and a degree d, where we permit ad = 0 so that discrete
polynomial curves of degree less than d are covered as well.

When d is fixed, D (a0, . . . , ad) is determined only by a0, . . . , ad. We therefore
consider the problem in the parameter space {(a0, . . . , ad)} = R

d+1, instead of
the data space Z

2 where P resides. A discrete polynomial curve in the data space
is represented as a point in the parameter space. A data point in P , on the other
hand, is represented as a region in the parameter space, which is defined as follows.

For p = 1, . . . , n, we define the feasible region Rp for the pth data (ip, jp) by

Rp =

⎧
⎪⎪⎨

⎪⎪⎩
(a0, . . . , ad) ∈ R

d+1

∣
∣
∣
∣
∣
∣
∣
∣

min
s∈{1,...,4}

h(p,s) (a0, . . . , ad)

≤ 0 ≤
max

s∈{1,...,4}
h(p,s) (a0, . . . , ad)

⎫
⎪⎪⎬

⎪⎪⎭
, (2)
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(a) Rp.

...

(b) Parameter space.

Fig. 2. Feasible regions in the parameter space. (a) shows Rp for d = 2 and (ip, jp) =
(1, 0). Each point in the data space is represented in the parameter space by an
unbounded concave polytope like this. (b) shows intersections among the feasible regions
for four individual data points, which are indexed from 1 to 4. (a0, . . . , ad) in a darker
region has a larger number of inliers in the data space.

where

h(p,s) (a0, . . . , ad) = (jp + ys) −
d∑

l=0

(ip + xs)
l
al. (3)

See Fig. 2(a) for an illustration of Rp. We remark that (ip, jp) ∈ D (a0, . . . , ad) iff
(a0, . . . , ad) ∈ Rp.

We also define a feasible region for a set of data. For Π ⊂ {1, . . . , n}, we define
the feasible region RΠ for the set

{
(ip, jp)

∣
∣ p ∈ Π

}
of data by RΠ =

⋂
p∈Π Rp,

which is also written as

RΠ =

⎧
⎪⎪⎨

⎪⎪⎩

(a0, . . . , ad) ∈ R
d+1

∣
∣
∣
∣
∣
∣
∣
∣

max
p∈Π

min
s∈{1,...,4}

h(p,s) (a0, . . . , ad)

≤ 0 ≤
min
p∈Π

max
s∈{1,...,4}

h(p,s) (a0, . . . , ad)

⎫
⎪⎪⎬

⎪⎪⎭

. (4)

We remark that RΠ may be bounded or unbounded, convex or concave, and
connected or disconnected as can be seen in Fig. 2(b) (e.g., R{1,2,3} is bounded
and convex, while R{2,4} is unbounded and disconnected).

RΠ = ∅ if no (a0, . . . , ad) ∈ R
d+1 satisfies (ip, jp) ∈ D (a0, . . . , ad) for ∀p ∈ Π.

Our problem is therefore formulated as follows.

Problem 1. Given P and d, find Π ⊂ {1, . . . , n} that has the maximum cardinality
providing RΠ �= ∅, and (a0, . . . , ad) ∈ R

d+1 satisfying (a0, . . . , ad) ∈ RΠ for
that Π.

We remark that the solution Π is not necessarily unique. In the example in
Fig. 2(b), the data index set Π that we would like to find is {1, 2, 3}.
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...

(a) F (p, s) = H (p, s) ∩ Bp ∪ Bp .

...

(b) FΠ (p, s) = F (p, s) ∩ RΠ .

Fig. 3. Concepts to represent a flat part on the surface of a feasible region. In (b), Π =
{1, 2, 3}.

3 Properties of Feasible Regions

3.1 Concepts and Notations

Our approach to find an inclusion-wise maximal inlier set is as follows: starting
from an arbitrary Π ⊂ {1, . . . , n} satisfying RΠ �= ∅, we iteratively search p ∈
{1, . . . , n} \ Π such that RΠ∪{p} (= RΠ ∩ Rp) �= ∅ and add it to Π, where every
time we update Π (Π := Π∪{p}) we compute its corresponding RΠ . By repeating
this procedure until there is no such p, we can ensure an inclusion-wise maximal
inlier set. It is however impossible to store all points in RΠ in a computer, since RΠ

is generally an infinite set when RΠ �= ∅. We therefore focus only a finite number of
points in RΠ that correspond to the notion of the vertices of a polytope (Fig. 4).
As a vertex of a polytope is defined as an intersection point of flat parts on the
surface of the polytope called facets, we first need a notion for RΠ corresponding
to a facet of a polytope.

Let p ∈ {1, . . . , n} be any data index. For s = 1, . . . , 4, we first define
H (p, s) =

{
(a0, . . . , ad) ∈ R

d+1
∣
∣ h(p,s) (a0, . . . , ad) = 0

}
. H (p, s) is a hyper-

plane included in Rp (Fig. 3(a)), which determines a flat part on the surface
of Rp. To represent the surface of Rp, we then define Bp = {(a0, . . . , ad) ∈
R

d+1 | mins∈{1,...,4} h(p,s) (a0, . . . , ad) = 0} and Bp = {(a0, . . . , ad) ∈ R
d+1 |

maxs∈{1,...,4} h(p,s) (a0, . . . , ad) = 0}. Bp and Bp are the “lower” and “upper”
boundaries (with a0 considered as the height) of Rp (cf. Fig. 3(a)). We remark
that Bp is determined only by s = 1, 2 while Bp is determined only by s = 3, 4,
and that Bp ∩ Bp = ∅. The flat part of Bp ∪ Bp (i.e., facet of Rp) determined by
H (p, s), for s = 1, . . . , 4, is then represented by F (p, s) = H (p, s) ∩ (

Bp ∪ Bp

)

(Fig. 3(a)). Note that Bp ∪ Bp =
⋃

s∈{1,...,4} F (p, s).
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Fig. 4. CΠ for d = 2 and Π = {1, 2, 3} with (i1, j1) = (−2, 3), (i2, j2) = (0, 0), (i3, j3) =
(2, 5). Points in CΠ are depicted in red. (Color figure online)

Let Π ⊂ {1, . . . , n} be any set of data indices. Since RΠ =
⋂

p∈Π Rp, the
flat part of the boundary of RΠ (i.e., facet of RΠ) determined by H (p, s), for
(p, s) ∈ Π×{1, . . . , 4}, is obtained as a subset of F (p, s). Namely, it is represented
by FΠ (p, s) = F (p, s) ∩ RΠ . See Fig. 3(b) for an illustration of FΠ (p, s). We
remark that FΠ (p, s) can be empty for some (p, s) ∈ Π × {1, . . . , 4}.

We now define a subset of RΠ corresponding to the vertices of a polytope. In
R

d+1, d + 1 hyperplanes intersect at one point when their normal vectors are lin-
early independent. We therefore can specify a finite subset of RΠ by enumerating
(a0, . . . , ad) ∈ ⋂d+1

λ=1 FΠ (pλ, sλ) for all (p1, s1) , . . . , (pd+1, sd+1) ∈ Π × {1, . . . , 4}
such that H (p1, s1) , . . . , H (pd+1, sd+1) are linearly independent. Namely, CΠ

identifies a subset (i.e., vertices) of RΠ :

CΠ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a0, . . . , ad)
∈ R

d+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

there exist
(p1, s1) , . . . , (pd+1, sd+1) ∈ Π × {1, . . . , 4}
such that (a0, . . . , ad) ∈ ⋂d+1

λ=1 FΠ (pλ, sλ)
and H (p1, s1) , . . . , H (pd+1, sd+1) are
linearly independent

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (5)

See Fig. 4 for an illustration of CΠ . We remark that CΠ is a finite set since Π ×
{1, . . . , 4} has only a finite number of elements. We also define the family of sets
of d + 1 elements of Π × {1, . . . , 4} determining elements of CΠ :

ΨΠ =

⎧
⎪⎪⎨

⎪⎪⎩

{(p1, s1) , . . . , (pd+1, sd+1)}
⊂ Π × {1, . . . , 4}

∣
∣
∣
∣
∣
∣
∣
∣

H (p1, s1) , . . . , H (pd+1, sd+1)
are linearly independent and
their intersection point is in
⋂d+1

λ=1 FΠ (pλ, sλ)

⎫
⎪⎪⎬

⎪⎪⎭

. (6)

We remark that different sets in ΨΠ may determine the same element of CΠ .

3.2 Updated Feasible Region by an Additional Inlier

Here we give four properties of RΠ (Theorems 1–4) which are important for
enabling the approach described in the beginning of Sect. 3.1, where RΠ is rep-
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resented by CΠ . We start with the following lemma required to prove three of
those properties, which states the condition for m (m = 1, . . . , d) flat parts
FΠ (p1, s1) , . . . , FΠ (pm, sm) on the surface of RΠ to contribute to determining
a point in CΠ . The proof of this lemma is provided in AppendixA.

Lemma 1. Let Π ⊂ {1, . . . , n} be a data index set such that RΠ �= ∅ and
RΠ is bounded, and let (p1, s1) , . . . , (pm, sm) be m (m = 1, . . . , d) elements of
Π × {1, . . . , 4}. There exists a set in ΨΠ containing (p1, s1) , . . . , (pm, sm) if (i)⋂m

λ=1 FΠ (pλ, sλ) �= ∅ and (ii)H (p1, s1) , . . . , H (pm, sm) are linearly independent.

Since RΠ is represented by CΠ in our approach, it is important that CΠ �= ∅
whenever RΠ �= ∅. This can be proven under the condition that RΠ is bounded.
Note that ΨΠ �= ∅ is equivalent with CΠ �= ∅.

Theorem 1. For Π ⊂ {1, . . . , n} such that RΠ �= ∅ and RΠ is bounded, ΨΠ �= ∅.
Proof. It is obvious that there exists (p, s) ∈ Π ×{1, . . . , 4} satisfying FΠ (p, s) �=
∅. From Lemma 1, then, there exists a set in ΨΠ containing (p, s). ΨΠ �= ∅, accord-
ingly. ��

From Theorem 1, for any Π ⊂ {1, . . . , n} such that RΠ is bounded, we can
always obtain a point in RΠ by computing CΠ . There are however

(
4|Π|
d+1

)
ways to

pick d+1 different elements from Π ×{1, . . . , 4}, so that checking all those combi-
nations to compute CΠ is not practical for Π with a large number of elements. In
the following we give a relationship between ΨΠ and ΨΠ∪{p}, for p ∈ {1, . . . , n}\Π,
with which we can reduce the computational cost for obtaining ΨΠ∪{p} when we
have ΨΠ .

For Π � {1, . . . , n} and p ∈ {1, . . . , n} \ Π, we define Φ1
Π,p to be the family

of sets each of whose set is obtained by replacing an element of a set in ΨΠ with
(p, s) for s ∈ {1, . . . , 4}:

Φ1
Π,p =

{{(p1, s1) , . . . , (pd, sd)}
∪ {(p, s)}

∣
∣
∣
∣

{(p1, s1) , . . . , (pd, sd)} is a subset
of a set in ΨΠ and s = 1, . . . , 4

}

. (7)

We also define Φ2
Π,p to be the family of sets each of whose set is obtained by replac-

ing two elements of a set in ΨΠ with (p, 1) and (p, 2), or (p, 3) and (p, 4):

Φ2
Π,p =

⎧
⎨

⎩

{(p1, s1) , . . . , (pd−1, sd−1)}
∪ {(p, s) , (p, s′)}

∣
∣
∣
∣
∣
∣

{(p1, s1) , . . . , (pd−1, sd−1)} is
a subset of a set in ΨΠ

and (s, s′) = (1, 2) , (3, 4)

⎫
⎬

⎭
. (8)

We then have the following relationship among ΨΠ , ΨΠ∪{p}, Φ1
Π,p and Φ2

Π,p.

Theorem 2. For Π such that RΠ is bounded, ΨΠ∪{p} ⊂ ΨΠ ∪ Φ1
Π,p ∪ Φ2

Π,p.

Proof. We assume ΨΠ∪{p} �= ∅; otherwise the statement is obviously true. Let
ψ = {(p1, s1) , . . . , (pd+1, sd+1)} be a set in ΨΠ∪{p}. We show ψ ∈ ΨΠ ∪ Φ1

Π,p ∪
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Φ2
Π,p. We assume that m of p1, . . . , pd+1 ∈ Π ∪ {p} are equal to p and the others

belong to Π. If ψ contains (p, s) and (p, s) for any s ∈ {1, 2} and s ∈ {3, 4}, then
⋂d+1

λ=1 FΠ∪{p} (pλ, sλ) = ∅ from F (p, s) ∩ F (p, s) = ∅ (recall that F (p, s) ⊂ Bp,
F (p, s) ⊂ Bp and Bp ∩ Bp = ∅), contradicting ψ ∈ ΨΠ∪{p}. m ≥ 3 is therefore
impossible, because in that case (p, s) and (p, s) are necessarily contained in ψ. We
therefore have m ≤ 2, where when m = 2 the two elements of ψ corresponding to
p are either (p, 1) and (p, 2), or (p, 3) and (p, 4).

We first consider the case of m = 0. We then have (p1, s1) , . . . , (pd+1, sd+1) ∈
Π × {1, . . . , 4}. From ψ ∈ ΨΠ∪{p},

⋂d+1
λ=1 FΠ∪{p} (pλ, sλ) �= ∅ and H (p1, s1), . . .,

H (pd+1, sd+1) are linearly independent. Since FΠ (pλ, sλ) ⊃ FΠ∪{p} (pλ, sλ) (λ =
1, . . . , d + 1), we have

⋂d+1
λ=1 FΠ (pλ, sλ) �= ∅. ψ ∈ ΨΠ , consequently.

We next consider the case of m = 1, 2. Without loss of generality, we assume
p1, . . . , pd+1−m ∈ Π. We prove ψ ∈ Φm

Π,p by showing that assuming oth-
erwise leads to a contradiction. Namely, we assume that there exists no such
set in ΨΠ that contains (p1, s1) , . . . , (pd+1−m, sd+1−m). Lemma 1 then suggests
that

⋂d+1−m
λ=1 FΠ (pλ, sλ) = ∅ (which implies

⋂d+1−m
λ=1 FΠ∪{p} (pλ, sλ) = ∅) or

H (p1, s1) , . . . , H (pd+1−m, sd+1−m) are not linearly independent. This contra-
dicts ψ ∈ ΨΠ∪{p}. ��

With Theorem 2, we do not have to evaluate all the sets of d + 1 ele-
ments of (Π ∪ {p}) × {1, . . . , 4} to compute ΨΠ∪{p}, but only those in ΨΠ ∪
Φ1

Π,p ∪ Φ2
Π,p. For {(p1, s1) , . . . , (pd+1, sd+1)} ∈ ΨΠ , {(p1, s1) , . . . , (pd+1, sd+1)} ∈

ΨΠ∪{p} is verified as soon as the corresponding (a0, . . . , ad) ∈ CΠ satisfies
(a0, . . . , ad) ∈ Rp. This is because that we have (a0, . . . , ad) ∈ ⋂d+1

λ=1 FΠ (pλ, sλ)
from (a0, . . . , ad) ∈ CΠ , and FΠ (pλ, sλ)∩Rp = FΠ∪{p} (pλ, sλ) (λ = 1, . . . , d+1).
For {(p1, s1) , . . . , (pd+1, sd+1)} ∈ Φm

Π,p (m = 1, 2), on the other hand, we have to
check if

⋂d+1
λ=1 H (pλ, sλ) has the unique element (a0, . . . , ad), and (a0, . . . , ad) ∈

⋂d+1
λ=1 FΠ∪{p} (pλ, sλ). We remark that here it suffices to evaluate (a0, . . . , ad) ∈

⋂d+1
λ=1 FΠ (pλ, sλ) (i.e., we do not have to verify (a0, . . . , ad) ∈ Rp) because pλ = p

for some λ ∈ {1, . . . , d + 1} so that we have (a0, . . . , ad) ∈ H (p, sλ) ⊂ Rp. The
computational cost for evaluating (a0, . . . , ad) ∈ RΠ , which is required for check-
ing if (a0, . . . , ad) ∈ FΠ (pλ, sλ), can be reduced by using the following property
of RΠ .

Let
⋃

ΨΠ denote the union of all sets in ΨΠ . For Π ⊂ {1, . . . , n}, then, we
define

R∗
Π =

⎧
⎪⎪⎨

⎪⎪⎩

(a0, . . . , ad) ∈ R
d+1

∣
∣
∣
∣
∣
∣
∣
∣

max
p∈Π∗

min
s∈ΣΠ(p)

h(p,s) (a0, . . . , ad)

≤ 0 ≤
min
p∈Π∗

max
s∈ΣΠ(p)

h(p,s) (a0, . . . , ad)

⎫
⎪⎪⎬

⎪⎪⎭

, (9)

where
Π∗ =

{
p ∈ Π

∣
∣
∣ (p, s) ∈

⋃
ΨΠ for some s ∈ {1, . . . , 4}

}
(10)

and
ΣΠ (p) =

{
s ∈ {1, . . . , 4}

∣
∣
∣ (p, s) ∈

⋃
ΨΠ

}
. (11)
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Note that ΣΠ (p) �= ∅ for p ∈ Π∗. R∗
Π is equivalent with Eq. (4) where only

h(p,s) (a0, . . . , ad) for (p, s) contained in
⋃

ΨΠ are involved. We now show that
Eq. (9) serves as a simpler form of Eq. (4) when RΠ is bounded.

Theorem 3. For Π such that RΠ is bounded, R∗
Π = RΠ .

Proof. Suppose that (p, s) ∈ Π × {1, . . . , 4} is not in
⋃

ΨΠ . Lemma 1 (in the case
of m = 1) then implies FΠ (p, s) = ∅, which means that (p, s) does not contribute
to determining the boundary of RΠ . ��

Since the theorems above hold true only when RΠ is bounded, it is impor-
tant to know when RΠ is bounded. We conclude this section by giving a sufficient
condition for which RΠ is bounded. Recall that the coordinates of the pth data
(p = 1, . . . , n) is denoted by (ip, jp).

Theorem 4. Let Π = {p1, . . . , pd+1} ⊂ {1, . . . , n} be a set of d + 1 data indices
such that

∣
∣ipλ

− ipμ

∣
∣ > 1 for ∀λ �= μ. RΠ is bounded. For any Π ′ ⊂ {1, . . . , n}

such that Π ′ ⊃ Π, therefore, RΠ′ is bounded.

Proof. We show that a superset R′
Π ⊂ R

d+1 of RΠ defined in the following is
bounded.

For λ = 1, . . . , d + 1, we first define

R′
pλ

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a0, . . . , ad) ∈ R
d+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

min
(x′,y′)∈S

[

(jpλ
+ y′) −

m∑

l=0

(ipλ
+ x′)l

al

]

≤ 0 ≤
max

(x′,y′)∈S

[

(jpλ
+ y′) −

m∑

l=0

(ipλ
+ x′)l

al

]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

(12)
where S =

{
(x′, y′) ∈ R

2
∣
∣ max {|x′| , |y′|} ≤ 1

2

}
. S is the square having (x1, y1),

. . ., (x4, y4) as its vertices. We therefore have R′
pλ

⊃ Rpλ
. Since S is connected in

R
2, the intermediate value theorem allows to rewrite Eq. (12) as

R′
pλ

=

⎧
⎪⎨

⎪⎩
(a0, . . . , ad) ∈ R

d+1

∣
∣
∣
∣
∣
∣
∣

(jpλ
+ y′) =

d+1∑

l=0

(ipλ
+ x′)l

al

for some (x′, y′) ∈ S

⎫
⎪⎬

⎪⎭
. (13)

We then define R′
Π by R′

Π =
⋂d+1

λ=1 R′
pλ

, which is written as

R′
Π =

⎧
⎪⎨

⎪⎩
(a0, . . . , ad) ∈ R

d+1

∣
∣
∣
∣
∣
∣
∣

(jpλ
+ y′

λ) =
d+1∑

l=0

(ipλ
+ x′

λ)l
al

for some (x′
1, y

′
1) , . . . ,

(
x′

d+1, y
′
d+1

) ∈ S

⎫
⎪⎬

⎪⎭
. (14)

R′
Π is therefore obtained by collecting (a0, . . . , ad) ∈ R

d+1 satisfying
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Algorithm 1. Discrete polynomial curve fitting.
Require: P , d and I ⊂ {1, . . . , n} such that RI �= ∅ and RI is guaranteed by Theorem

4 to be bounded.
Ensure: Π ⊂ {1, . . . , n} and CΠ .
1: Initialize Π := any set of d + 1 elements of I satisfying the property in Theorem 4.
2: Initialize Π� := ∅.
3: Compute ΨΠ and CΠ .
4: while I \ Π �= ∅ do
5: p := any data index in I \ Π.
6: Compute ΨΠ∪{p} and CΠ∪{p} by Algorithm 2
7: Π := Π ∪ {p}.
8: end while
9: while {1, . . . , n} \

(
Π ∪ Π�

)
�= ∅ do

10: p := any data index in {1, . . . , n} \
(
Π ∪ Π�

)
.

11: Compute ΨΠ∪{p} and CΠ∪{p} by Algorithm 2
12: if ΨI∪{p} �= ∅ then
13: Π := Π ∪ {p}.
14: else
15: Π� := Π� ∪ {p}.
16: end if
17: end while
18: return Π and CΠ .

⎛

⎜
⎜
⎜
⎝

jp1 + y′
1

jp2 + y′
2

...
jpd+1 + y′

d+1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1 ip1 + x′
1 (ip1 + x′

1)
2 · · · (ip1 + x′

1)
d

1 ip2 + x′
2 (ip2 + x′

2)
2 · · · (ip2 + x′

2)
d

...
...

...
. . .

...
1 ipd+1 + x′

d+1

(
ipd+1 + x′

d+1

)2 · · · (ipd+1 + x′
d+1

)d

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

a0

a1

...
ad

⎞

⎟
⎟
⎟
⎠

(15)
for all combinations of (x′

1, y
′
1) , . . . ,

(
x′

d+1, y
′
d+1

) ∈ S. Since the (d + 1) × (d + 1)
matrix in Eq. (15) is a Vandermonde matrix, its determinant is given by

∏

1≤λ<μ≤d+1

((
ipμ

+ x′
μ

)− (ipλ
+ x′

λ)
)
, (16)

none of whose factors can be zero from
∣
∣ipμ

− ipλ

∣
∣ > 1 for ∀λ �= μ. For any fixed

(x′
1, y

′
1) , . . . ,

(
x′

d+1, y
′
d+1

) ∈ S, therefore, (a0, . . . , ad) is uniquely determined by
Eq. (15) to be a point with the coordinates of finite values. It follows from this that
R′

Π is bounded. ��

4 Algorithm

4.1 Algorithm Ensuring Inclusion-Wise Maximal Inlier Set

Our method for discrete polynomial curve fitting, described in Algorithm1,
requires an initial inlier set and ensures an inclusion-wise maximal inlier set con-
taining the initial set. The initial inlier set is represented by its corresponding
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Algorithm 2. Update of ΨΠ and CΠ for an additional inlier.
Require: P , d, Π ⊂ {1, . . . , n}, p ∈ {1, . . . , n} \ Π, ΨΠ and CΠ .
Ensure: ΨΠ∪{p} and CΠ∪{p}.
1: Initialize Ψ := ∅ and C := ∅.
2: for all ψ ∈ ΨΠ do
3: (a0, . . . , ad) := the point in CΠ corresponding to ψ.
4: if (a0, . . . , ad) ∈ Rp then
5: Ψ := Ψ ∪ {ψ} and C := C ∪ {(a0, . . . , ad)}.
6: end if
7: end for
8: Compute Φ1

Π,p and Φ2
Π,p (Eqs. (7) and (8)).

9: for all ψ = {(p1, s1) , . . . , (pd+1, sd+1)} ∈ Φ1
Π,p ∪ Φ2

Π,p do

10: if
⋂d+1

λ=1 H (pλ, sλ) has the unique point then

11: (a0, . . . , ad) := the unique point in
⋂d+1

λ=1 (pλ, sλ)

12: if (a0, . . . , ad) ∈ R∗
Π ∩⋂d+1

λ=1 F (pλ, sλ) then
13: Ψ := Ψ ∪ {ψ} and C := C ∪ {(a0, . . . , ad)}.
14: end if
15: end if
16: end for
17: return Ψ = ΨΠ∪{p} and C = CΠ∪{p}.

index set I in Algorithm 1. The algorithm divides the data indices 1, . . . , n into
two classes Π and Π�: those for inliers are sorted into Π, while those for outliers
into Π�. Π is first initialized to be a set of d + 1 indices in I, for which ΨΠ and
CΠ are computed at low cost using Eq. (6). In the two while-loops, then, we add
new data indices to Π one by one accordingly computing corresponding ΨΠ and
CΠ using Algorithm 2. The first while-loop in Algorithm1 is to obtain ΨI and CI ,
where ΨΠ∪{p} in each iteration cannot be empty from RI �= ∅ (Theorem 1). Note
that RI is nonempty and bounded. The second while-loop is to obtain ΨΠ and CΠ

for Π such that Π ⊃ I, where a data index p is sorted into Π� if ΨΠ∪{p} = ∅, i.e.,
RΠ∪{p} = ∅ (Theorem 1).

Algorithm 2 shows how to compute ΨΠ∪{p} and CΠ∪{p} for Π ⊂ {1, . . . , n}
and p ∈ {1, . . . , n} \ Π when ΨΠ and CΠ are known. The algorithm evaluates
each set in ΨΠ ∪ Φ1

Π,p ∪ Φ2
Π,p to check if it is in ΨΠ∪{p} (Theorem 2). The first

for-loop is to evaluate the sets in ΨΠ , while the second for-loop is to evaluate the
sets in Φ1

Π,p ∪ Φ2
Π,p. Why a set in ΨΠ ∪ Φ1

Π,p ∪ Φ2
Π,p is verified to be in ΨΠ∪{p}

in this way is explained in Sect. 3.2 (after the proof of Theorem2). In the second
loop we use Theorem 3 (R∗

Π = RΠ) to reduce the computational cost for checking
if (a0, . . . , ad) ∈ FΠ (pλ, sλ) (= RΠ ∩ F (pλ, sλ)) for λ = 1, . . . , d + 1.

Since ΨΠ∪{p} �= ∅ if RΠ∪{p} �= ∅ from Theorem 1, after the second loop in
Algorithm 1 we obtain an inclusion-wise maximal inlier set, which is equivalently
stated in the following theorem.

Theorem 5. Let Π ⊂ {1, . . . , n} be a data index set obtained by Algorithm1.
There exists no Π ′ ⊂ {1, . . . , n} satisfying Π ′ ⊃ Π and RΠ′ �= ∅.
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The output of Algorithm 1 depends on the initial inlier set (i.e., I), and there-
fore how to determine I is an important issue. Most straightforwardly we can just
set I to be random d + 1 data indices for which RI is bounded according to The-
orem 4, where RI �= ∅ can be evaluated by computing CI (Theorem 1). Since our
objective is to maximize the number of inliers, however, it is better to give I that
is as large as possible. Note that Algorithm 1 outputs Π ⊂ {1, . . . , n} such that
Π ⊃ I. To reduce the possibility of being trapped in a local optimum with a small
number of inliers, it is also important for I not to be contaminated with noise.
For the acquisition of such I, we can use a robust estimation algorithms such as
RANSAC [1].

The output of Algorithm1 also depends on the order in which data are added
to the initial inlier set, i.e., how to choose p in Line 10. Choosing p corresponding
to an outlier for the optimal solution here may make it impossible for many data
to be added. The performance of the algorithm therefore might be improved by
incorporating a procedure to select a “good” p, which is out of the scope of this
paper.

4.2 Computational Complexity

We give the computational cost required for Algorithm 1. We remark that here we
discuss the computational cost depending the number n of data where the degree
d is treated as a constant. The computational cost for each iteration in the two
while-loops (i.e., the computational cost for Algorithm2), depending on |Π|, is
written as

∣
∣ΨΠ ∪ Φ1

Π,p ∪ Φ2
Π,p

∣
∣ multiplied by the computational cost required for

checking if a set in ΨΠ ∪ Φ1
Π,p ∪ Φ2

Π,p is in ΨΠ∪{p}.
We first consider the order of |ΨΠ |. We remark that

∣
∣Φ1

Π,p

∣
∣ and

∣
∣Φ2

Π,p

∣
∣ depend

on |ΨΠ |: in fact, we generally have
∣
∣Φ1

Π,p

∣
∣ = 4 (d + 1) |ΨΠ | and

∣
∣Φ2

Π,p

∣
∣ =

2
(
d+1
2

) |ΨΠ | = d (d + 1) |ΨΠ |. Since a set in ΨΠ is composed of d + 1 elements
of Π × {1, . . . , 4}, |ΨΠ | is bounded by the number of ways to pick d + 1 elements
of Π × {1, . . . , 4}, i.e.,

(
4|Π|
d+1

)
= O

(
|Π|d+1

)
. This upper bound is reduced by

removing sets of d + 1 elements of Π × {1, . . . , 4} containing (p, s) and (p, s)
for any p ∈ Π, s ∈ {1, 2} and s ∈ {3, 4} (such sets cannot be in ΨΠ∪{p} since

F (p, s) ∩ F (p, s) = ∅), which however does not change the order O
(
|Π|d+1

)
.

We next consider the computational cost for evaluating ψ ∈ ΨΠ∪{p} for ψ =
{(p1, s1) , . . . , (pd+1, sd+1)} ∈ ΨΠ ∪Φ1

Π,p∪Φ2
Π,p. For ψ ∈ ΨΠ , we only have to check

if the corresponding (a0, . . . , ad) ∈ CΠ satisfies (a0, . . . , ad) ∈ Rp, which takes a
constant cost O (1). For ψ ∈ Φ1

Π,p ∪ Φ2
Π,p, on the other hand, the computational

cost is O (|Π|): we first have to check if (a0, . . . , ad) ∈ ⋂d+1
λ=1 H (pλ, sλ) uniquely

exists (computational cost: O (1)), and if so, we then have to check if (a0, . . . , ad) ∈
⋂d+1

λ=1 FΠ (pλ, sλ) (computational cost: O (|Π|)).
Since O (|ΨΠ |) = O (∣

∣Φ1
Π,p ∪ Φ2

Π,p

∣
∣
)

= O
(
|Π|d+1

)
, the computational cost

for each iteration in the two while-loops is therefore obtained as O
(
|Π|d+1

)
×
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O (|Π|) = O
(
|Π|d+2

)
. In the first iteration |Π| = d + 1, and in the last itera-

tion |Π| = n − 1 at most. The theoretical computational cost for Algorithm 1 is
therefore

∑n−1
m=d+1 O (

md+2
)

= O (
nd+2

)
.

5 Conclusions

We dealt with the problem of fitting a discrete polynomial curve to 2D noisy data,
for which we proposed a method guaranteeing inclusion-wise maximality of its
obtained inlier set. The method is constructed based on our investigation on the
properties of the feasible regions in the parameter space corresponding to input
data points. Evaluation of the practical performance of the proposed method is left
for future work. This work may be extended to implicit functions (f (x, y) = 0)
and surface fitting in 3D.

A Appendix: Proof of Lemma 1

Proof. For m = 1, . . . , d, let (p1, s1) , . . . , (pm, sm) ∈ Π ×{1, . . . , 4} satisfy (i) and
(ii) in Lemma 1. It suffices to show that there always exists (pm+1, sm+1) ∈ Π ×
{1, . . . , 4} such that

⋂m+1
λ=1 FΠ (pλ, sλ) �= ∅ and H (p1, s1) , . . . , H (pm+1, sm+1)

are linearly independent. See Fig. 5 for an illustration of this proof.
Let (a′

0, . . . , a
′
d) ∈ R

d+1 be a point in
⋂m

λ=1 FΠ (pλ, sλ). No proof is required
for the case where there exists (pm+1, sm+1) ∈ Π × {1, . . . , 4} such that
(a′

0, . . . , a
′
d) ∈ FΠ (pm+1, sm+1) and H (p1, s1) , . . . , H (pm+1, sm+1) are linearly

independent. We therefore assume otherwise. Since FΠ (p, s) ⊂ H (p, s) for any
(p, s), we have (a′

0, . . . , a
′
d) ∈ ⋂m

λ=1 H (pλ, sλ).
⋂m

λ=1 H (pλ, sλ) is a (d + 1 − m)-
dimensional flat (d + 1 − m ≥ 1), and therefore we may consider a half-line
in

⋂m
λ=1 H (pλ, sλ) running from (a′

0, . . . , a
′
d). A point in the half-line is repre-

sented by (a′′
0 (r) , . . . , a′′

d (r)) where a′′
l (r) = a′

l + rvl (l = 0, . . . , d) with some
non-zero vector (v0, . . . , vd) ∈ R

d+1 and a non-negative parameter r ∈ R≥0:
(a′′

0 (r) , . . . , a′′
d (r)) = (a′

0, . . . , a
′
d) for r = 0, and as we increase the value of r,

the point traces the half-line in the direction of the vector (v0, . . . , vd).
Since FΠ (pλ, sλ) (⊂ RΠ) is bounded for λ = 1, . . . , m, a large enough r sat-

isfies (a′′
0 (r) , . . . , a′′

d (r)) /∈ ⋂m
λ=1 FΠ (pλ, sλ). Let r′

1 be the maximum value of r
such that any r ≤ r′

1 satisfies (a′′
0 (r) , . . . , a′′

d (r)) ∈ RΠ (note that this may be
satisfied for some r > r′

1 when RΠ is concave). Let r′
2, on the other hand, be

the maximum value of r satisfying (a′′
0 (r) , . . . , a′′

d (r)) ∈ ⋂m
λ=1 F (pλ, sλ) (note

that this is satisfied for any r < r′
2 since F (pλ, sλ) is convex for λ = 1, . . . , m),

where we put r′
2 = ∞ if it is satisfied for any r > 0. Then, r′ = min {r′

1, r
′
2}

is the maximum value of r such that any r ≤ r′ satisfies (a′′
0 (r) , . . . , a′′

d (r)) ∈⋂m
λ=1 FΠ (pλ, sλ) (recall that FΠ (p, s) = F (p, s) ∩ RΠ). We now show that

(a′′
0 (r′) , . . . , a′′

d (r′)) ∈ FΠ (pm+1, sm+1) for some (pm+1, sm+1) ∈ Π × {1, . . . , 4}
where (pm+1, sm+1) �= (pλ, sλ) for λ = 1, . . . , m. We remark that, for such
(pm+1, sm+1), H (p1, s1) , . . . , H (pm+1, sm+1) are linearly independent, since oth-
erwise it is impossible to have (a′′

0 (r′) , . . . , a′′
d (r′)) ∈ H (pm+1, sm+1) whereas

(a′′
0 (0) , . . . , a′′

d (0)) /∈ H (pm+1, sm+1).
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Fig. 5. Illustration for the proof of Lemma 1. We assume m = 1 here. Let the black
point depict (a′

0, . . . , a
′
d) = (a′′

0 (0) , . . . , a′′
d (0)). As we increase the value of r from

zero, (a′′
0 (r) , . . . , a′′

d (r)) traces a half-line in H (p1, s1) running from (a′
0, . . . , a

′
d). For

r = r′ (intuitively speaking, just before (a′′
0 (r) , . . . , a′′

d (r)) comes off FΠ (p1, s1)), then,
(a′′

0 (r) , . . . , a′′
d (r)) is in FΠ (p1, s1) ∩ FΠ (p2, s2) for some (p2, s2) ∈ Π × {1, . . . , 4}, so

that we have m = 2 with FΠ (p1, s1) and FΠ (p2, s2). (a′′
0 (r′) , . . . , a′′

d (r′)) is depicted in
a red point. (Color figure online)

We first assume the case of r′ = r′
1 < r′

2: as we increase the value of r past
r′, (a′′

0 (r) , . . . , a′′
d (r)) gets out of RΠ , i.e., Rpm+1 for some pm+1 ∈ Π (recall that

RΠ =
⋂

p∈Π Rp). We remark that pm+1 �= p1, . . . , pm for λ = 1, . . . , m since any
r satisfies (a′′

0 (r) , . . . , a′′
d (r)) ∈ H (pλ, sλ) ⊂ Rpλ

. For this pm+1, therefore, we
have (a′′

0 (r′) , . . . , a′′
d (r′)) ∈ Bpm+1 , i.e., (a′′

0 (r′) , . . . , a′′
d (r′)) ∈ F (pm+1, sm+1)

for some sm+1 ∈ {1, . . . , 4}. (a′′
0 (r′) , . . . , a′′

d (r′)) ∈ F (pm+1, sm+1) ∩ RΠ =
FΠ (pm+1, sm+1), accordingly.

We next assume the case of r′ = r′
2 ≤ r′

1: as we increase the value of r past r′,
(a′′

0 (r) , . . . , a′′
d (r)) gets out of F (pλ, sλ) for some λ ∈ {1, . . . , m}. Without loss

of generality, we assume that λ = 1, and (a′′
0 (r) , . . . , a′′

d (r)) ∈ Bp1 for r ≤ r′. We
then have

h(p1,s1) (a′′
0 (r) , . . . , a′′

d (r)) = max
s∈{1,...,4}

h(p1,s) (a′′
0 (r) , . . . , a′′

d (r)) for r ≤ r′,

(17)
while

h(p1,s1) (a′′
0 (r) , . . . , a′′

d (r)) < max
s∈{1,...,4}

hp1,s (a′′
0 (r) , . . . , a′′

d (r)) for r > r′. (18)

This suggests that for some s′
1 ∈ {1, . . . , 4} \ {s1} we have

0 = h(p1,s1) (a′′
0 (r′) , . . . , a′′

d (r′)) = h(p1,s′
1) (a′′

0 (r′) , . . . , a′′
d (r′))

= max
s∈{1,...,4}

h(p1,s) (a′′
0 (r′) , . . . , a′′

d (r′)) , (19)

Note that h(p1,s1) (a′′
0 (r) , . . . , a′′

d (r)) = 0 (i.e., (a′′
0 (r) , . . . , a′′

d (r)) ∈ H (p1, s1))
is satisfied for any r. (a′′

0 (r′) , . . . , a′′
d (r′)) ∈ F (p1, s′

1) ∩ RΠ = FΠ (p1, s′
1), conse-

quently. ��
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