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Abstract Preserving connectivity is an important property commonly required for
object discretization. Connectivity of a discretized object differs depending on how
to discretize its original object. The morphological discretization is known to be
capable of controlling the connectivity of a discretized object, by selecting an appro-
priate structuring element. The analytical approximation, which approximates the
morphological discretization by a finite number of inequalities, on the other hand, is
recently introduced to reduce the computational cost required for the morphological
discretization. However, whether this approximate discretization has the same con-
nectivity that the morphological discretization has is yet to be investigated. In this
paper, we study the connectivity relationship between the morphological discretiza-
tion and the analytical approximation, focusing on 2D explicit curves. We show that
they guarantee the same connectivity for 2D explicit curves.

Keywords Discretization · Explicit curve · Connectivity · Morphological
discretization · Structuring element · Analytical approximation

1 Introduction

An object such as a curve or line is continuous in the real world while in the com-
puter it is discretized to be stored and manipulated. We therefore need a discrete
representation of a given object, which differs depending on how to discretize it.
An important property commonly required for object discretization is to preserve
the connectivity of an original object. In this paper, we consider discretization of an
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Fig. 1 k-adjacent points of an integer point v. a k = 0. b k = 1

(a) (b)

Fig. 2 k-connected sets in Z
2. Red line segments indicate k-adjacency relation in the set. a k = 0.

b k = 1

explicit continuous curve in 2D, i.e., a continuous function in the form of y = f (x)
in the xy-plane, primarily focusing on the connectivity of discretized curves.

Two integer points v,w (v �= w) ∈ Z
2 are said to be 0-adjacent if ‖v−w‖∞ ≤ 1,

and 1-adjacent if ‖v − w‖1 ≤ 1 (Fig. 1). Note that ‖(x, y)‖∞ = max(|x |, |y|) and
‖(x, y)‖1 = |x | + |y|. A set of integer points D ⊂ Z

2 is said to be k-connected for
k ∈ {0, 1}, if for any two points v,w (v �= w) ∈ D there exists a sequence of integer
points in D connecting v and w, such that any two consecutive points in the sequence
are k-adjacent. Figure 2 shows k-connected sets for k = 0, 1. We remark that if D is
1-connected then it is also 0-connected.

The discretization most commonly used is the morphological discretization [11–
14]. In this approach, for a continuous curve, its discretized curve is defined as a
set of the integer points, whose Minkowski additions with a so-called structuring
element intersect with the original curve. Some classical discretizations, such as
the supercover discretization [9] or the grid-intersection discretization [15], can be
seen as particular cases of the morphological discretization. The morphological dis-
cretization can control the connectivity in the discrete space of a discretized curve
by selecting an appropriate structuring element [6–8, 21–23].

How to discretize a curve and how to compute its discretized one are differ-
ent issues. The computational cost required for the morphological discretization is
expensive. To overcome this drawback, representing a discretized curve by a finite
set of Diophantine inequalities (from which we choose only integer points) was
introduced in [19], where a discrete 2D straight line is defined by two inequalities.
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On Connectivity of Discretized 2D Explicit Curve 35

Such a representation, called the analytical representation, has been developed for
more complicated discrete curves in subsequent researches [1–5, 10, 22, 23]. A dis-
cretized curve with an analytical representation is straightforwardly computed at low
cost, just by evaluating inequalities for each integer point. This property is useful
also for curve fitting problems [16–18, 20, 24, 25]. To reduce the computational
cost further, an approximation of the analytical representation, called the analytical
approximation, was recently introduced in [22], where only vertices of the employed
structuring element are evaluated to have the system of Diophantine inequalities.
This approximation is capable of handling even further complicated (and implicit)
curves/surfaces in any dimensions. However, whether the analytical approximation
has the same connectivity that the original morphological discretization has is yet to
be investigated.

In this paper, we study the relationship on the connectivity between discretized
2D explicit curves, by the morphological discretization and by the analytical approx-
imation. We show that the analytical approximation has the same connectivity that
the morphological discretization has for 2D explicit curves.

2 Morphological Discretization and Analytical
Approximation

In this section, we first introduce the definition of the morphological discretiza-
tion, with two structuring elements guaranteeing 1-connectivity or 0-connectivity
(Sect. 2.1). We then give the analytical approximation of the morphological dis-
cretization of a 2D explicit curve with these structuring elements, based on the
approach introduced in [22] (Sect. 2.2).

2.1 Morphological Discretization

The morphological discretization (see [11–14]) of a curve E ⊂ R
2, with a structuring

element S ⊂ R
2, is defined by

DS(E) = (E ⊕ Š) ∩ Z
2, (1)

where Š = {−s : s ∈ S}. ⊕ denotes the Minkowski addition (E ⊕ Š = {e + š : e ∈
E, š ∈ Š}). (1) can be also written as

DS(E) =
{
v ∈ Z

2 : ({v} ⊕ S) ∩ E �= ∅
}
. (2)

Figure 3 illustrates the two different interpretations of DS(E) in (1) and (2).

sugimoto@nii.ac.jp



36 F. Sekiya and A. Sugimoto

S
E

S

E

(a) (b)

Fig. 3 Two different interpretations of morphological discretization DS(E). Red points depict
DS(E). a DS(E) in (1). b DS(E) in (2)
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Fig. 4 Morphological discretizations using structuring elements B∞ and B1. a is 1-connected while
b is 0-connected. a DB∞ (E). b DB1 (E)

Using different structuring elements for the same curve results in different dis-
cretizations, and in particular, different connectivities (see Fig. 4 for example). How
to select an appropriate structuring element is therefore important. In this paper,
we focus on two structuring elements, each of which induces 1-connectivity or 0-
connectivity. They are defined by

B∞ =
{
p ∈ R

2 : ‖ p‖∞ ≤ 1

2

}
,

B1 =
{
p ∈ R

2 : ‖ p‖1 ≤ 1

2

}
.

The morphological discretization with B∞, i.e., DB∞(E), is equivalent to the super-
cover discretization of E , which is known to be 1-connected if E is connected in R

2

[21] (Fig. 4a). DB1(E), on the other hand, is 0-connected for connected E (Fig. 4b),
which has yet to be reported to the best of our knowledge; here we give its proof.

Theorem 1 DB1(E) is 0-connected for connected E ⊂ R
2, as long as it has at least

two different integer points.
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ui

C

Fig. 5 Illustration for proof of Theorem 1. Blue region depicts {ui }⊕ B1, while red region depicts
A0(ui ) ⊕ B1

Proof Let s, t be any two different integer points in DB1(E). We show that there exists
a sequence of integer points from s to t in DB1(E), such that any two consecutive
points in the sequence are 0-adjacent. We call such a sequence a 0-path from s to t in
DB1(E). We denote by p, q ∈ R

2 intersection points of E respectively with {s}⊕ B1
and {t} ⊕ B1. Then, since E is connected, there exists a segment C ⊂ E whose end
points are p and q. We now consider the unique path along C from p to q, with
collecting in the path integer points u1, . . . , un , whose Minkowski additions with
B1 (i.e., {ui } ⊕ B1, i = 1, . . . , n) intersect with C . This process generates a 0-path
from s to t in DB1(E), which is proven as follows. First, it is obvious that u1 = s
and un = t . Next, {u1, . . . , un} ⊂ DB1(E) because {u1, . . . , un} = DB1(C) and
C ⊂ E . Finally, we show that ui+1 is a 0-adjacent point of ui for i = 1, . . . , n − 1.
We denote by A0(v) the set of the 0-adjacent points of v ∈ Z

2 (see Fig. 1a). Any
point in {ui } ⊕ B1 is then either contained in A0(ui ) ⊕ B1 or enclosed by it as in
Fig. 5. Therefore, the path along C from an intersection point with {ui } ⊕ B1 toward
the terminal point q, has to cross A0(ui ) ⊕ B1 before reaching the “outside” of it.
This indicates that ui+1 ∈ A0(ui ). There exists a 0-path from s to t , accordingly. ��

2.2 Analytical Approximation

Computing DS(E) for a given E ⊂ R
2 with S = B∞, B1 requires evaluating for any

v ∈ Z
2 whether or not {v} ⊕ S intersects with E . This is computationally expensive.

When E is an explicit curve, i.e., in the form of y = f (x), however, we can compute
it approximately at low cost (within a finite region in Z

2) based on the approach
introduced in [22].

A 2D explicit continuous curve is represented by

E =
{
(x, y) ∈ R

2 : y = f (x)
}
, (3)
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where f : R → R is a continuous function. From (2), for E in (3), DS(E) can be
written as

DS(E) =
{
(xint, yint) ∈ Z

2 : yint + ty = f (xint + tx ) for ∃(tx , ty) ∈ S
}
. (4)

Note that yint + ty = f (xint + tx ) means (xint + tx , yint + ty) ∈ E . Since f is
continuous, the intermediate-value theorem allows for connected S to rewrite (4) as

DS(E) =
⎧⎨
⎩(xint, yint) ∈ Z

2 :
yint ≥ min

(tx ,ty)∈S

(
f (xint + tx ) − ty

)
,

yint ≤ max
(tx ,ty)∈S

(
f (xint + tx ) − ty

)
⎫⎬
⎭ . (5)

Note that both B∞ and B1 are connected.
For S = B∞, B1, unfortunately, evaluating the minimum and maximum of

f (xint + tx ) − ty with respect to (tx , ty) ∈ S is practically impossible, because
S has infinite elements. Following [22], however, we can approximately compute (5)
by replacing S = B∞, B1 with finite subsets V∞, V1 defined by

V∞ =
{(

−1

2
,−1

2

)
,

(
−1

2
,

1

2

)
,

(
1

2
,−1

2

)
,

(
1

2
,

1

2

)}
,

V1 =
{(

−1

2
, 0

)
,

(
0,−1

2

)
,

(
0,

1

2

)
,

(
1

2
, 0

)}
.

They are the sets of the vertices respectively of B∞ and B1 as in Fig. 6. We then
obtain the analytical approximations for DB∞(E) and DB1(E) respectively as

(a) (b)

Fig. 6 a V∞ and b V1 (red points). They are the sets of the vertices respectively of B∞ and B1
(depicted in blue)
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Fig. 7 a DB∞ (E) and b D′
V∞ (E) (red points on the grids) for E = {(x, y) ∈ R

2 : y = f (x) =
0.4571x3 − 3.127x2 + 5.019x + 1.228}. In (b), points (x, y) ∈ Z

2 ⊕ V∞ satisfying y > f (x) are
depicted in green, while those satisfying y < f (x) in orange; an integer point v ∈ Z

2 is in D′
V∞ (E)

iff {v} ⊕ V∞ (four points) are depicted in both colors or include a point on E
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Fig. 8 a DB1 (E) and b D′
V1
(E) (red points on the grids) for E = {(x, y) ∈ R

2 : y = f (x) =
0.4571x3 − 3.127x2 + 5.019x + 1.228}. In b, points (x, y) ∈ Z

2 ⊕ V1 satisfying y > f (x) are
depicted in green, while those satisfying y < f (x) in orange; an integer point v ∈ Z

2 is in D′
V1
(E)

iff {v} ⊕ V1 (four points) are depicted in both colors or include a point on E

D′
V∞ (E) =

{
(xint, yint) ∈ Z

2 : yint ≥ min
{

f
(
xint − 1

2

)
, f

(
xint + 1

2

)} − 1
2 ,

yint ≤ max
{

f
(
xint − 1

2

)
, f

(
xint + 1

2

)} + 1
2

}
, (6)

D′
V1
(E) =

{
(xint, yint) ∈ Z

2 : yint ≥ min
{

f
(
xint − 1

2

)
, f

(
xint + 1

2

)
, f (xint) − 1

2

}
,

yint ≤ max
{

f
(
xint − 1

2

)
, f

(
xint + 1

2

)
, f (xint) + 1

2

}
}
.

(7)

For each (xint, yint) ∈ Z
2, the inequalities in (5) are evaluated at only the four

vertices of S = B∞ (resp. B1) in D′
V∞(E) (resp. D′

V1
(E)), while they have to be

evaluated at all the points in S = B∞ (resp. B1) in the morphological discretization.
Therefore the analytical approximation is computationally more inexpensive than the
morphological discretization. On the other hand, the analytical approximation may
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fail in collecting some integer points involved in the morphological discretization
as in Figs. 7 and 8 (in the next section, we will see that such cases arise when the
Minkowski addition of an integer point and B∞ [resp. B1] is intersected by E , but
not by its piecewise linear approximation defined in (8) [resp. (9)]). We remark that
we can also replace B∞ and B1 with larger finite subsets than V∞ and V1 for more
accurate approximation.

3 Connectivity Relation Between Morphological
Discretization and Analytical Approximation

In this section, we show that the analytical approximation for a 2D explicit curve
introduced in the last section has the same connectivity in Z

2 that the morphological
discretization has. To prove this, we show that the discretization of an explicit curve
E by the analytical approximation can be seen as the morphological discretization
of a piecewise linear approximation of E . We first show that D′

V∞(E) has the same
connectivity with DB∞(E).

Theorem 2 D′
V∞(E) is 1-connected.

Proof We show that D′
V∞(E) = DB∞(E ′) for E ′ defined by

E ′ = {(x, y) ∈ R
2 : y = f ′(x)}, (8)

where

f ′(x) = f
(⌊

x + 1
2

⌋ − 1
2

)
+ (

x − (⌊
x + 1

2

⌋ − 1
2

)) (
f
(⌊

x + 1
2

⌋ + 1
2

) − f
(⌊

x + 1
2

⌋ − 1
2

))
.

E ′ is a piecewise linear approximation of E as in Fig. 9. We remark that f ′(xint+ 1
2 ) =

f (xint + 1
2 ), and f ′(x) is linear within

[
xint − 1

2 , xint + 1
2

]
for ∀xint ∈ Z. DB∞(E ′)

is 1-connected because E ′ is connected in R
2.

E

E’

1/2 3/2-1/2x = -3/2

Fig. 9 E and E ′
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From (5), DB∞(E ′) is written as

DB∞(E ′) =
⎧⎨
⎩(xint, yint) ∈ Z

2 :
yint ≥ min

(tx ,ty)∈B∞

(
f ′(xint + tx ) − ty

)
,

yint ≤ max
(tx ,ty)∈B∞

(
f ′(xint + tx ) − ty

)
⎫⎬
⎭ .

We will transform it into D′
V∞(E). Since tx and ty are independent of each other for

(tx , ty) ∈ B∞, the extrema of f ′(xint + tx ) − ty with respect to (tx , ty) are obtained
by minimizing and maximizing it independently for tx and ty . With respect to ty , it
is obviously minimal with ty = 1

2 , and maximal with ty = − 1
2 . With respect to tx ,

on the other hand, the extrema are at tx = − 1
2 or 1

2 because f ′(x) is linear within[
xint − 1

2 , xint + 1
2

]
for ∀xint ∈ Z. Consequently,

DB∞(E ′) =

⎧⎪⎪⎨
⎪⎪⎩
(xint, yint) ∈ Z

2 :
yint ≥ min

{
f ′

(
xint − 1

2

)
, f ′

(
xint + 1

2

)}
− 1

2
,

yint ≤ max

{
f ′

(
xint − 1

2

)
, f ′

(
xint + 1

2

)}
+ 1

2

⎫⎪⎪⎬
⎪⎪⎭
,

which is equal to D′
V∞(E) in (6), because f ′(xint ± 1

2 ) = f (xint ± 1
2 ) for ∀xint ∈ Z.��

We next show that D′
V1
(E) has the same connectivity with DB1(E).

Theorem 3 D′
V1
(E) is 0-connected.

Proof We show that D′
V1
(E) = DB1(E ′′) for E ′′ defined by

E ′′ = {(x, y) ∈ R
2 : y = f ′′(x)}, (9)

where

f ′′(x) = f
( �2x�

2

)
+ 2

(
x − �2x�

2

) (
f
( �2x�+1

2

)
− f

( �2x�
2

))
.

E ′′ is a piecewise linear approximation of E as in Fig. 10. We remark that f ′′( xint
2 ) =

f ( xint
2 ), and f ′′(x) is linear within

[
xint
2 , xint+1

2

]
for ∀xint ∈ Z. From Theorem 1,

DB1(E ′′) is 0-connected because E ′′ is connected in R
2.

DB1(E ′′) is written as

DB1(E ′′) =
⎧⎨
⎩(xint, yint) ∈ Z

2 :
yint ≥ min

(tx ,ty)∈B1

(
f ′′(xint + tx ) − ty

)
,

yint ≤ max
(tx ,ty)∈B1

(
f ′′(xint + tx ) − ty

)
⎫⎬
⎭ .
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E

E”

1/2 3/2-1/2x = -3/2

Fig. 10 E and E ′′

We will transform it into D′
V1
(E). Since − 1

2 + |tx | ≤ ty ≤ 1
2 − |tx | for (tx , ty) ∈ B1,

DB1(E ′′) can be rewritten as

DB1(E ′′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(xint, yint) ∈ Z

2 :
yint ≥ min

tx ∈
[
− 1

2 ,
1
2

]
(

f ′′(xint + tx ) − 1

2
+ |tx |

)
,

yint ≤ max
tx ∈

[
− 1

2 ,
1
2

]
(

f ′′(xint + tx ) + 1

2
− |tx |

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

Here, the minimum of f ′′(xint + tx )− 1
2 + |tx | and the maximum of f ′′(xint + tx )+

1
2 − |tx | with respect to tx ∈ [− 1

2 ,
1
2

]
are at tx = − 1

2 , 0 or 1
2 , because they are linear

within tx ∈ [− 1
2 , 0

]
and tx ∈ [

0, 1
2

]
. We thus obtain

DB1(E ′′) =⎧⎪⎪⎨
⎪⎪⎩
(xint, yint) ∈ Z

2 :
yint ≥ min

{
f ′′

(
xint − 1

2

)
, f ′′

(
xint + 1

2

)
, f ′′ (xint) − 1

2

}
,

yint ≤ max

{
f ′′

(
xint − 1

2

)
, f ′′

(
xint + 1

2

)
, f ′′ (xint) + 1

2

}
⎫⎪⎪⎬
⎪⎪⎭
,

which is equal to D′
V1
(E) in (7), because f ′′(xint ± 1

2 ) = f (xint ± 1
2 ), and f ′′(xint) =

f (xint) for ∀xint ∈ Z. ��
For 2D explicit curves, therefore, the analytical approximation introduced in [22]
guarantees the same connectivity in Z

2 that the morphological discretization does.

4 Conclusion

We investigated the connectivity relation between the morphological discretization
and the analytical approximation introduced in [22] for 2D explicit continuous curves.
We first showed that the morphological discretization of a 2D continuous curve with
the structuring element B1 (the ball of radius 1

2 based on l1 norm) guarantees 0-
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connectivity of the obtained result. We then showed that the discretization of a 2D
explicit curve by the analytical approximation has the same connectivity in Z

2 that
its morphological discretization has. Our proof is based on the idea that the analytical
approximation for a 2D explicit curve can be seen as the morphological discretization
of a piecewise linear approximation of the curve. Whether this property holds for
parametric curves, or curves and surfaces in higher dimensions, will be investigated
in our future work.
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