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Abstract. This paper presents a new method for fitting a digital line to
a given set of points in a 2D image in the presence of noise by maximizing
the number of inliers, namely the consensus set. By using a digital line
model instead of a continuous one, we show that we can generate all
possible consensus sets for digital line fitting. We present a deterministic
algorithm that efficiently searches the optimal solution with the time
complexity O(N2 log N) and the space complexity O(N) where N is the
number of points.
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1 Introduction

Line fitting is an essential task in the field of image analysis. For instance, this
procedure is useful for recognition [1], shape approximation [2] as well as pa-
rameter fitting [3]. There exist several optimal methods such as least-square
fitting, least-absolute-value fitting or least median of squares (LMS) [3–5]. In
these models, a continuous line model is used, defined by

L = {(x, y) ∈ R2 : ax + y + b = 0}, (1)

where a, b ∈ R. The fitting is carried out through optimizing different cost func-
tions. For instance, least-squares minimizes the sum of the geometric distances
from all given points to the model. The solution can be obtained analytically,
however it is not robust to the presence of outliers. Least-absolute values uses
the vertical distances, instead of the geometric distances, for its minimization.
Some efficient iterative algorithms have been proposed in the literature. How-
ever, if there are outliers, the solution is known to be unstable. In contrast, LMS
minimizes the median of the vertical/geometric distances of all given points to
the model. Thus, the fitting is robust as long as fewer than half of the given
points are outliers [6].
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In this paper, we present another globally optimal method that, given an
arbitrary cloud of points, finds the line that minimizes the number of outliers,
or alternatively maximizing the number of inliers, also called the consensus set.
The idea of using such consensus sets were proposed for the RANdom SAmple
Consensus (RANSAC) method [7], which is one of the most widely used in the
field of computer vision. However RANSAC (and its variations) is inherently
probabilistic in its approach, and do not guarantee any optimality while our
method is both deterministic and optimal in the size of the consensus set.

In order to guarantee the optimality of consensus sets, we follow a digital
geometry methodology [8] by using a digital line model instead of (1). This
methodology is in fact natural given the assumption that our inputs are dig-
ital images. Besides, such a digital model allows us to distinguish between
digitization-induced noise and actual noise in the case where the input data
consist primarily of pixels. Related work using digital line models can be found
in works such as digital line recognition [9, 10], and digital curve polygonalisa-
tion [2, 11] with and without the presence of noise. However, to the best of our
knowledge, outliers, namely points which do not fit the model, have never been
treated in the field of digital geometry.

The rest of the paper is as follows: in section 2 we expose the framework of
our digital model. In section 3 we prove the optimality of our result by clarifying
the relationship between our digital line model and its consensus sets. In section
4 we provide an algorithm for the computation of the fit, in terms of maximiz-
ing the number of inliers. We also show the computational time complexity of
O(N2 log N) and the space complexity of O(N) with N the number of points.
Section 5 provides a method for extracting the parameters from the fit. Section
6 is devoted to results and applications. Section 7 states some conclusions and
perspectives.

2 The problem of digital line fitting

In this paper, we use the following digital line model in a discrete space Z2,
where Z is the set of all integers. A digital line that is a digitization of L of (1),
denoted by D(L). It is defined [15] by the set of discrete points simultaneously
satisfying two inequalities:

D(L) = {(x, y) ∈ Z2 : 0 ≤ ax + y + b ≤ w} (2)

where w is a given constant value. Geometrically, D(L) is a set of discrete points
lying between two parallel lines ax+y+b = 0 and ax+y+b = w, and w specifies
the vertical distance between these lines. For ideal images of digitized lines, from
the discrete geometry viewpoint [8, 9], w should be 1 − 1/K where K is a very
large constant if we expect that D(L) is 8-connected5 and −1 ≤ a ≤ 1. In
other words, this value of w is the minimum distance required to maintain the

5 Such digital lines are specially called naive lines [8, 9].
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(a) (b)

Fig. 1. A digital line that has one critical point p1 (a), and its rotated digital line that
has a second critical point p2 (b).

connectivity of a digital line. For thicker contour images, w can be set to greater
or equal to 1 [10, 11].

Concerning lines where |a| > 1, including vertical lines, we consider a digital
line under a horizontal distance constraint, instead of a vertical one, between
the two parallel lines. In that case, we simply exchange x and y in (2). Because
the slope of a fitted digital line is not known in advance, we shall need to test
both digital line models when fitting a digital line. Without loss or generality,
we proceed in the remainder by using the vertical orientation in (2) for simpli-
fication.

Using this digital line model, our fitting problem is then described as follows:
given a finite set of discrete points such that

S = {x ∈ Z2 : i = 1, 2, . . . , N},

we would like to find a digital line D(L) such that D(L) contains the maximum
number of points in S. Points x ∈ S are called inliers if x ∈ S∩D(L); otherwise,
they are called outliers. Note that in our problem, w is given as a constant and
is fixed, so we do not need to find w when the fitting is accomplished.

3 Approach based on consensus sets

Our approach is focusing on inlier sets, also called consensus sets. Since the size
of S is finite and each element x ∈ S has finite coordinates, we easily notice
that the number of different consensus sets for a digital line fitting of S is finite
as well. Thus, if we can find all different consensus sets C from a given S, we
just need to check the size of each C and the one (or ones if there are ties) with
maximal size as the optimal solution. The purpose of this section is to show that
this is possible.

In the following, we give some notions related to digital lines. Two parallel
lines that are given by the equations in (2) are called the support lines of a
digital line. Discrete points that are on support lines are called critical points of
a digital line. We then show the following proposition.

Proposition 1. Let C be a consensus set of S for a digital line. It is possible
to find a new digital line whose consensus set is the same as C such that it has
at least two critical points.
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(a) (b)

Fig. 2. A digital line that has no critical point (a), and its translated digital line that
has one critical point p1 (b).

Proof. Let D be an initial digital line that contains all points in C as its inliers.
Then, the following three cases can be considered when studying the critical
points of D.

1. Suppose that D has more than one critical points, then the proposition is
already established in this case.

2. Suppose that D has one critical point p1 as illustrated in Figure 1 (a). In
this case, we apply a rotation to D around p1 until finding another point
p2 in C so that p2 becomes a critical point. The rotation is accomplished in
such a way as to maintain the distance w between the support lines, and so
that the support line on which there is not p1 is rotated around the point
p′

1 that is the projection of p1 on the line. Figure 1 (b) shows an example
of a rotated digital line of Figure 1 (a) in order to find p2. Note that we can
rotate D either clockwise or counterclockwise.

3. Suppose that D has no critical point as illustrated in Figure 2 (a). In this
case, we first apply a translation to D in order to find a first critical point p1.
Note that a translation can be made to any direction and the two support
lines shall maintain the distance w between them. During such a translation,
if more than one points are detected as critical points, then the proof is
complete. If just one point p1 is detected, as illustrated in Figure 2 (b), then
a rotation is made around p1 as mentioned in the previous case, in order to
obtain a second critical point p2.

From this proposition, we see that we can find a digital line D(L) for any
consensus set C of S such that it has at least two critical points. This is intuitively
understandable, because when we move a digital line D(L) in the image plane,
its consensus set C will be changed the moment a critical point goes out from
D(L), namely, becomes an outlier, due to the motion of the line. Indeed, such a
digital line D(L) can be constructed from a pair of points chosen from S such
that they become critical points of D(L). Consequently, we can find all C from
those D(L) constructed from pairs of points in S. Note that the pair of points
should not have the same x-coordinate with the vertical distance w, if we use
(2) for computing a and b.
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4 Algorithm

This section presents an algorithm that exhibits an optimal consensus set maxi-
mizing the number of inliers of a fitted digital line from a given set S of discrete
points in 2D.

w

b
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w

x

y

Fig. 3. A digital line of width w in the primal space (left) corresponds to a vertical
line segment of length w in the dual space (right).

Our algorithm is inspired by the algorithm of LMS [12] working in the dual
space of the following duality transform [13]; the dual space is also used for
Hough Transform [16]: let p = (xp, yp) be a 2D point in the primal space (x, y),
then the dual of p is the line:

L0
p = {(a, b) : xpa + b + yp = 0}

in the dual space (a, b). Likewise, the dual of a non-vertical line ax + y + b = 0
in the primal space is the point (a, b) in the dual space.

Now, let us consider the dual-space interpretation of a digital line in the pri-
mal space, defined by (2). Because a digital line is regarded as a set of parallel
lines whose slopes are −a and y-intercepts are between −b and w − b, it corre-
sponds to a vertical line segment of length w, which is the distance between two
parallel lines of a digital line, in the dual space as illustrated in Figure 3. Because
points in S in the primal space are represented by lines in the dual space, the
problem of finding the optimal consensus set in the primal set is equivalent to
searching the best position of the vertical line segment of length w such that
it intersects with as many lines as possible in the dual space, as illustrated in
Figure 3.

Obviously, we cannot search everywhere in the dual space to find the best
line segment. From Proposition 1, we know that, for any consensus set, there
exists a digital line that has at least two critical points. Therefore, we first take
one point p ∈ S, and consider it to be the first critical point of such a fitted
digital line. Because p corresponds to a line L0

p in the dual space, all digital
lines for which p is a critical point correspond to the set of all the vertical line
segments of length w having one of its endpoints on L0

p in the dual space, as
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shown in Figure 4. The set of such digital lines, therefore, forms two strips in
the dual space; one of them is bounded by L0

p and L1
p, and another is bounded

by L0
p and L2

p, where

L1
p = {(a, b) : xpa + b + yp − w = 0},

L2
p = {(a, b) : xpa + b + yp + w = 0},

as illustrated in Figure 4. For simplification, we focus on the strip bounded by L0
p

and L1
p, because the following discussion is also valid for another strip bounded

by L0
p and L2

p.
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Fig. 4. Digital lines on which a point p is a critical point in the primal space (left),
and those corresponding vertical line segments of length w in the dual space (right). In
the dual space, a set of all such digital lines forms two strips, each of which is bounded
by two lines L0

p and Li
p for i = 1, 2.
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Fig. 5. Three points p, q, r in the primal space (left), and the corresponding lines
L0

p, L0
q and L0

r in the dual space, with ai
q, ai

r for i = 0, 1, the a-coordinates of the
intersections of either L0

q or L0
r with Li

p (right).

In order to know the number of inliers within every digital line on which p is a
critical point in the primal space, we need to count the number of the other lines,
L0

q for q ∈ S where xq 6= xp, that intersects with the strip at every moment of
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values a in the dual space. This is accomplished by checking the intersections of
all the lines with the strip. Let us consider q = (xq, yq) as one of such a point in
S to be the second critical point of a fitted digital line. Geometrically, in the dual
space, a digital line having two critical points p and q is given by the vertical line
segment in the strip, one of whose endpoints is one of the intersections (ai

q, bi
q)

of Li
p and L0

q for i = 0, 1. In fact, the digital lines corresponding to the vertical
line segments between a0

q and a1
q in the strip always contain q as an inlier. For

every q ∈ S such that xq 6= xp, we thus calculate these two values ai
q, i = 0, 1,

as illustrated in Figure 5.
Once ai

q, i = 0, 1 for every q ∈ S are obtained, we sort all ai
q in increasing

order. For determining the moment of maximum intersections, a simple function
F (a) is used; after initially setting F (a) = 0 for every a, 1 is added when L0

q

enters the strip and −1 is added when L0
q leaves the strip. The details for the

calculation of F (a) are shown in Algorithm 1; two values f i
q for i = 0, 1 are used.

Algorithm 1 also considers another strip bounded by L0
p and L2

p, instead of
L0

p and L1
p, as seen in Steps 4, 9 and 21. Note that depending on the strip, we

calculate different bc, as shown in Steps 21 and 22, because of the translation
difference w between the two strips. We also note that the algorithm provides
us with the set of parameter pair values (ac, bc) of all the fitted digital lines of
(2) that give the optimal consensus sets.

The time complexity of the algorithm is O(N2 log N), because we have N
points in S and each p ∈ S needs the complexity O(N log N) for sorting at most
2N − 2 different values ai

q for q ∈ S, q 6= p, and i = 0, 1. The space complexity
is O(N) because for each sorting we have at most 2N −2 different pairs (ak, fk).

Because all inputs can be given as integers or rational numbers, all com-
putations in Algorithm 1 can be made by using only rational numbers. This
guarantees that all results obtained by Algorithm 1 contain no calculation error.

5 Feasible digital line parameters

Once we obtain an optimal consensus set C for digital line fitting to a given
point set S, we need the parameters of digital lines fitted to C for further appli-
cations. In general, the continuous line model such as (1) is used for estimating
the parameters, for example, by applying the least squared method [3] to C.
However, we must be careful because this may change inliers. In such a case, a
new C should be recalculated from a new estimated line, so that the iterative
procedure may be necessary for renewing C with consecutive re-estimated line
parameters.

In our case, however, since we use the digital line model such as (2) instead
of (1), we do not need such an estimation method, and there is no possibility
that parameter values obtained by C may produce a different C. We can obtain
all feasible solutions for the parameters of digital lines fitted to an obtained
optimal C as follows: we just look for all feasible solutions (a, b) that satisfy the
inequalities of (2) for all (x, y) ∈ C.
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Algorithm 1: Digital line fitting

input : A set S of N grid points, a value w
output: A list V of parameter value pairs (ac, bc) of the best fitted digital line
begin1

initialize Max = 0;2

foreach p ∈ S do3

for l = 1, 2 do4

initialize the array T [k] for k = 1, . . . , 2N − 2;5

set j = 0;6

foreach q ∈ S such that xq 6= xp do7

calculate ai
q for i = 0, 1;8

if l = 2 then calculate a2
q and reset a1

q = a2
q;9

if a0
q < a1

q then set f0
q = 1, f1

q = −1;10

else set f0
q = −1, f1

q = 1;11

set the pair (ai
q, f i

q), for i = 0, 1, in T [2j + i];12

j = j + 1;13

sort all the elements (ak, fk) for k = 1, . . . , 2j in T with the values14

ak as keys;
initialize F = 1;15

for k = 1, . . . , 2j do16

F = F + fk;17

if F > Max then set Max = F , V = ∅;18

if F = Max then19

set ac = ak;20

if l = 1 then bc = −akxp − yp;21

else bc = −akxp − yp + w;22

put (ac, bc) in V;23

return V;24

end25

Such feasible solutions of digital lines are called preimages, and it is known
that they have interesting properties [14]. For instance, a preimage of a digital
line forms a convex polygon in the dual space that has at most four vertices.

6 Experiments

6.1 Practical complexity

While Section 4 showed that the theoretical time complexity for digital line
fitting is O(N2 log N), it is also important to show that the practical computation
time corresponds to this theoretical result. For this purpose, we employed our
fitting algorithm for several randomly generated sets of points of increasing size.
Figure 6 shows the time variation with respect to the number of points N by
using an N2 log N regression. As the graph illustrates, the measured timings
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Fig. 6. Time versus number of points relations for digital line fitting.

follows the theoretical complexity. The algorithm was implemented in Matlab
and not optimized for computational efficiency.

6.2 Ideal digitization image

We tested our method with an ideally digitized image. The image is made from
two digital lines that are defined by a set of points (x, y) ∈ Z2 satisfying either
0 ≤ x + 2y − 10 ≤ 1 or 0 ≤ x − 2y ≤ 1, with some outliers. Our method is
applied to fit a digital line to this set of points. The distance w is set to be
one as same as the above given digital lines. Note that, in this case, we use the
fixed-horizontal-distance model. Two optimal consensus sets are found using our
method, as shown in Figure 7.

We compared our results with those of RANSAC. For comparison, the toler-
ance of RANSAC is set to 0.5; this value specifies the maximum distance of inliers
from a fitted line. In this experiment, we use the continuous line model of (1) as
in conventional RANSAC methods, and the horizontal distance as well as our
method. Figure 8 shows the RANSAC results. We can see that RANSAC found
only one consensus set, and besides it misses some inliers compared with the
optimal consensus set in Figure 7. This is due to the fact that RANSAC is based
on a random sampling, which provides no guarantee of optimality. However, the
computation time is relatively rapid, thanks to its probabilistic strategy. Thus,
in cases where it is sufficient to obtain an approximative solution for practical
reasons, using RANSAC may be justified.
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Fig. 7. Two optimal consensus sets obtained by our method for digital line fitting to
an ideally digitized image.
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Fig. 8. A consensus set obtained by RANSAC for line fitting to an ideally digitized
image.

6.3 Real image

We also tested our method with respect to a real image, as shown in Figure 9
(left), whose size is 520× 693. Before applying our method, edge detection and
mathematical morphological filtering are done for this image; the number of
points in the image after this pre-processing is 5572 points. Our method is then
applied in order to fit a digital line to the set of points. Figure 9 (right) shows
the optimal consensus set, which includes 602 inliers, for digital line fitting. The
distance w was set to be 1.

6.4 Polygonal contour images

We also tested polygonalisation using our method. It is tested using an iterative
procedure by applying our method; after each iteration, we take the inliers off
and apply our method to the remaining points.
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Fig. 9. An original image (left), and its optimal consensus set, in red color, of digital
line fitting (right).

Figure 10 (left) shows the original polygonal contour image containing some
noise whose size is 497 × 456. Figure 10 (right) shows the result after six iter-
ations of applying our method for the polygonalisation. The consensus set ob-
tained after each iteration is colored in red, blue, yellow, pink, cyan and green,
respectively. The number of all points is 1960, and the sizes of the consensus sets
are 297, 264, 186, 180, 119, and 104, respectively. The distance w is set to be 1.

Figure 11 (left) shows the contour image of a map of Mexico containing some
noise whose size is 640×444. Figure 11 (right) shows that our method also works
well on a complex non-concvexe shape. The consensus set obtained after each
iteration is colored in red, blue, yellow, pink, cyan and green, respectively. The
number of all points is 5324, and the sizes of the consensus sets are 262, 217,
196, 184, 177, and 161, respectively. Note that the distance w is set to be 3 for
this example. Since our line fitting procedure does not take connectivity into
account, it may be necessary to further decompose the fitted segment in a later
procedure.

7 Conclusions

In this paper we have presented a new method for line fitting on discrete data
– such as bitmap images, using a digital geometry (DG) approach. The DG
approach has the advantage of clearly separating effects due to digitization on
the one hand and noise on the other. Using our approach, we have proposed an
optimal fitting method from the point of view of the maximal consensus set: we
are guaranteed to fit digital lines with the least amount of outliers.

Our algorithm has a complexity that is identical to that of a parameter-free
traditional line-fitting algorithm such as least median of squares regression [6],
but allows us to define digital lines with precision, in the presence of outliers.
Future work will include improving algorithmic complexity and more complete
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Fig. 10. A polygonal contour image with noise (left), and its result after six iterations
of applying our method: the optimal consensus set obtained after each iteration is in
red, blue, yellow, pink, cyan and green, respectively (right).

applications such as optimal polygonalisation by choosing a good value for the
distance w automatically.
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