
Discrete Epipolar Geometry

Masatoshi Hamanaka1, Yukiko Kenmochi2, and Akihiro Sugimoto3

1 Department of Information Technology, Okayama University, Japan
2 UMR 8049 - IGM, CNRS/University of Marne-la-Vallée/ESIEE, France

3 National Institute of Informatics, Japan
y.kenmochi@esiee.fr

sugimoto@nii.ac.jp

Abstract. The epipolar geometry, which lies in the basis of 3D recon-
struction techniques in the field of computer vision, is formulated in con-
tinuous spaces and gives geometric relationships between different views
of a point in space. In applications, however, we cannot deal with points
themselves in digital images. This is because digital images involve some
digitization process and the smallest unit in digital images is a pixel.
In this paper, we propose a discrete version of the epipolar geometry,
called the discrete epipolar geometry, that gives geometric relationships
between pixels rather than points. We then apply this discrete epipolar
geometry to 3D reconstruction.

1 Introduction

The problem of inferring 3D information of a scene from a set of its images has a
long history in computer vision [3, 4, 7]. In particular, the epipolar geometry [7],
which is the intrinsic projective geometry between two views independent of
scene structure, has played a central role in reconstructing 3D information.

An intuitive interpretation of the epipolar geometry can be summarized as
follows. Suppose a point in the 3D space is imaged in two views observed from
two given different viewpoints. Each image point together with its viewpoint
defines a straight line (a line in short below) in space, which is known as a ray of
sight. Since we consider two viewpoints, we have two rays of sight with respect to
a spatial point. In general, two lines in space are in a twisted position and do not
meet. In our situation, however, two rays of sight do have the intersection, i.e.,
the point in space in observation, since we observe the point from two different
viewpoints. This results in a constraint on the coordinates of two image points.
The geometrical description of this constraint is the epipolar geometry and its
algebraic description is the epipolar equation. As we see, the epipolar geometry
is on the framework of projections between continuous spaces.

In applications, however, we cannot deal with points themselves in digital
images. This is because digital images involve some digitization process and the
smallest unit in digital images is not a point but a pixel. In fact, in the presence
of noise including digitization errors, two rays of sight do not generally meet,
which causes the problem of finding the best point of intersection [6].

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 323–334, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



324 M. Hamanaka, Y. Kenmochi, and A. Sugimoto

A tremendous amount of efforts have been made to deal with noise and to
show the robustness of developed methods (see [5, 8, 9, 12], for example). Some
introduce a noise model and statistically analyze the stableness and robustness
from the theoretical point of view. Some methods are experiment-oriented: they
show evidences of the robustness by their intensive experiments. In such studies,
however, errors incurred in the digitization process are not directly treated1

and they are regarded as portions of observation errors. This indicates that few
attempts have been made to discriminate digitization errors from observation
errors.

Digitization errors and observation errors are originally different from each
other and they have to be discriminated. This is because these two kinds of errors
are generated in different mechanisms. This paper attempts to discriminate the
two kinds of errors, focusing on pixels as the smallest unit of digital images.
Namely, we propose the discrete epipolar geometry, i.e., a discrete version of the
conventional epipolar geometry. The discrete epipolar geometry is formulated
through projections from the continuous 3D space to discrete image planes. We
introduce the notions of a pyramidal ray of sight and a discrete epipolar line, and
describe them in the mathematically well-defined form. We also present some
experiments of 3D reconstruction using the discrete epipolar geometry.

2 Epipolar Geometry

We review here the conventional epipolar geometry and give a mathematically
rigorous definition to an epipolar line.

We assume that the position and orientation of a camera with the focal length
f are given. We denote by Rn the n-dimensional space over the real number field
R. We also denote by I (⊂ R2) a finite plane representing an image plane. Let C
be the camera coordinate system, as shown in Fig. 1, where the origin coincides
with the viewpoint, the xy-plane is parallel to the image plane I, and the z-
coordinate is parallel to the optical axis and toward to the principal point of the
image plane. We also introduce a coordinate system to I so that its origin is the
principal point and its x- and y-coordinates are respectively identical with those
of C.

Let2 P = (X,Y,Z)� denote a point in V (⊂ R3) where V is the 3D space
observable by the camera. We then have its image point p = (x, y)�:

x = f
X

Z
, y = f

Y

Z
. (2.1)

The viewpoint, i.e., the origin of C, and p̃ = (x, y, f)� define a line in the 3D
space. This line is known as the ray of sight of an image point p.

1 In the latter half of 1980s, some discussion on digitization errors was reported [2, 11].
Such discussion, however, seems to be limited with the knowledge available at that
time.

2 We use column vectors and denote by x� the transposition of a vector x.
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Fig. 1. The conventional epipolar geometry

We now discuss the case of two cameras. Letting two calibrated cameras be
available (Fig. 1), we denote by C1 and C2 their camera coordinate systems, and
by I1 and I2 the finite planes representing their image planes. We also denote
their focal lengths by f1 and f2.

When we observe a point P in the 3D space, we obtain its two image points
p1 and p2 on I1 and I2 respectively. We call them corresponding points with
respect to P . P and two viewpoints define a plane in the 3D space, called an
epipolar plane of P . As shown in Fig. 1, two image points p1 and p2 are also on
the epipolar plane of P . The intersection of the epipolar plane and each image
plane forms a line, called an epipolar line. This epipolar line provides us with a
constraint on the corresponding points independent of the position of a point in
the 3D space. Namely, for a given point in an image plane, the location of its
corresponding point in the other image plane is bounded on the epipolar line.

This geometric configuration can be algebraically described with the essential
matrix. Essential matrix E, which is defined by3 E = [t]×R where R and t are a
rotation matrix and a translation vector relating the coordinates in C1 and C2

[7], thus plays a central role in the conventional epipolar geometry. Namely, for
a pair of corresponding points, p1 = (x1, y2)� ∈ I1 and p2 = (x1, y2)� ∈ I2, we
have

p̃�
1 Ep̃2 = 0, (2.2)

where p̃1 = (x1, y1, f1)� and p̃2 = (x2, y2, f2)�. (2.2) is called the epipolar
equation, providing that two cameras are calibrated.

The epipolar equation gives the constraint on pairs of corresponding points
across two views. To be more specific, for a given point p1 ∈ I1, the location of
its corresponding point in I2 is restricted into the line satisfying (2.2). This line
is identical with the epipolar line. Mathematically, the epipolar line EL(p1) for
p1 ∈ I1 is defined by

EL(p1) =
{
p2 ∈ I2 | p̃�

1 Ep̃2 = 0
}

. (2.3)

We note that EL(p1) is a set of points in I2 that satisfy the epipolar equation.

3 [�]× is the 3×3 skew-symmetric matrix constructed from a 3D vector �: [�]×� = �×�

for any 3D vector �.
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Fig. 2. The region Ω(q) ⊂ I dominated by pixel q = (i, j)� ∈ K and its four vertices

3 Digitization of an Image Plane

The smallest unit of images is not a point but a pixel. This indicates that an
image plane is not continuous but digitized. We here introduce a digitization
into an image plane. We denote by 1/rx and 1/ry the resolutions of x- and
y-coordinates. We also denote by Z the set of all integers.

For a given point p = (x, y)� ∈ I, we define

i = � x

rx
+

1
2
�, j = � y

ry
+

1
2
�. (3.1)

q = (i, j)� ∈ Z2 is a digitization of p and called a pixel representing p. Applying
this digitization to all the points in an image plane I leads to the digitization of
the image plane I:

K =
{(

i
j

)
∈ Z2 | rx

(
i − 1

2

)
≤ x < rx

(
i +

1
2

)
,

ry

(
j − 1

2

)
≤ y < ry

(
j +

1
2

)
,

(
x
y

)
∈ I

}
. (3.2)

We note that this digitization ensures a surjective mapping from points in I to
pixels in K.

Conversely, the region Ω(q) ⊂ I dominated by pixel q = (i, j)� ∈ K is given
by

Ω(q) =
{(

x
y

)
∈ I | rx

(
i − 1

2

)
≤ x < rx

(
i +

1
2

)
,

ry

(
j − 1

2

)
≤ y < ry

(
j +

1
2

)}
, (3.3)

which is illustrated in Fig. 2. Note that the solid lines and the black circles are
included in Ω(q) while the dotted lines and the white circles are not. We see in
Fig. 2 that Ω(q) forms a rectangle.

A point in space is imaged in a view as given in (2.1). Combining (2.1) and
(3.1) enables us to uniquely determine the pixel representing its image point for
a given point in space. Namely, for a point P = (X,Y,Z)�, the pixel q = (i, j)�

representing its image point is written by

i = � fX

rxZ
+

1
2
�, j = � fY

ryZ
+

1
2
�. (3.4)

We now have the following proposition.
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Fig. 3. Discrete epipolar geometry: a pyramidal ray of sight for a pixel in the first

image plane and its projection onto the second image plane

Fig. 4. Discrete epipolar line obtained from epipolar inequalities: two examples without

(left) and with (right) an epipole

Proposition 1. Any point P in V has the unique pixel in K that represents
an image point of P .

Various digitization schemes including (3.1) have been already proposed to
discuss geometric properties of digitized objects such as connectivities, bubble-
freeness and topologies (see [1, 10], for example). In our case, we employ (3.1) to
obtain Proposition 1 that plays an important role for building up our discrete
epipolar geometry.

4 Discrete Epipolar Geometry

In the conventional framework, for a point p1 in the image plane I1, a ray of sight
is defined as the line going through p1 and the viewpoint. Projecting this ray of
sight onto the image plane I2 observed from another viewpoint forms an epipolar
line in I2 (see (2.3) and Fig. 1). In our framework, which we call the discrete
epipolar geometry, on the other hand, for a pixel q1 in K1, i.e., the digitization
of I1, the quadrangular prism is defined by the pixel q1 and the viewpoint as
shown in Fig. 3. In this paper, this quadrangular prism is called a pyramidal ray
of sight. Projecting the pyramidal ray of sight onto the other image plane I2

forms a region that is identified by two inequalities, called epipolar inequalities.
We digitize the region to identify it as a set of pixels among the digitization of
I2, i.e., K2 (Fig. 4). We call the set a discrete epipolar line.

The above mentioned geometric configuration is algebraically captured by
the following steps.
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1. Define a pyramidal ray of sight for a given pixel q1 ∈ K1.
2. Define the epipolar inequalities as the projection of the pyramidal ray of

sight onto I2.
3. Obtain the discrete epipolar line in K2.

4.1 Pyramidal Ray of Sight

We here give the algebraic description to a pyramidal ray of sight (Fig. 3).
In our digitization of an image plane into pixels, any pixel forms a rectangle

of rx by ry, and thus has four vertices. Given a pixel q = (i, j)� ∈ K, we define
four vertices vk(q) ∈ I (k = 1, 2, 3, 4) as illustrated in Fig. 2:

v1(q) =
(

rx

(
i − 1

2

)
, ry

(
j − 1

2

))�
, v2(q) =

(
rx

(
i − 1

2

)
, ry

(
j +

1
2

))�
,

v3(q) =
(

rx

(
i +

1
2

)
, ry

(
j +

1
2

))�
, v4(q) =

(
rx

(
i +

1
2

)
, ry

(
j − 1

2

))�
.

q ∈ K together with a viewpoint defines the quadrangular prism:

S(q) = {X ∈ V | (ṽ1(q) × ṽ2(q))�X ≥ 0, (ṽ2(q) × ṽ3(q))�X > 0,

(ṽ3(q) × ṽ4(q))�X > 0, (ṽ4(q) × ṽ1(q))�X ≥ 0}, (4.1)

where X is the coordinates of a 3D point represented in the camera coordi-
nate system C, V is the 3D space observable from the viewpoint, and ṽk(q) =
(vk(q)�, f)�. S(q) is called the pyramidal ray of sight of q.

4.2 Epipolar Inequalities

For a given pixel q1 ∈ K1, we have four vertices, each of which together with two
given viewpoints defines its epipolar plane. We see that the pyramidal ray of sight
S(q1) of q1 is located between two of the four epipolar planes (cf. Fig. 3). We
call the region between the two epipolar planes that include S(q1) the discrete
epipolar plane of q1. The discrete epipolar plane is represented by a pair of
half-space inequalities. The intersection of the discrete epipolar plane and the
image plane I2 thus forms a region bounded by the two epipolar lines in I2. The
region is represented by two inequalities in I2, and the two inequalities are called
epipolar inequalities.

The following steps identify the epipolar inequalities for a given q1 ∈ K1.

1. Consider the epipolar planes of four vertices vk(q1) (k = 1, 2, 3, 4), and select
two vertices µ(q1) and ν(q1) among the four vertices so that the pyramidal
ray of sight S(q1) is located between the epipolar planes of µ(q1) and ν(q1).

2. Project S(q1) onto I2, and obtain two inequalities from the epipolar lines
EL(µ(q1)) and EL(ν(q1)).

For a pixel q1 ∈ K1, let ṽk(q1) = (vk(q1)�, f1)� (k = 1, 2, 3, 4). We now
represent epipolar planes corresponding to the vertices by

(t × ṽk(q1))�X = 0, (4.2)
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where t is the translation vector from the origin of C1 to that of C2, and X is
the coordinates of a 3D point represented in C1. We then select two of the four
planes between which the pyramidal ray of sight S(q1) is located.

We select a vertex vk(q1) so that the other three vertices vk′(q1)’s (k′ =
1, 2, 3, 4; k′ �= k) are all in one side of the epipolar plane of vk(q1). More
specifically, we select vk(q1) such that all the vk′(q1)’s except for vk(q1) (k′ =
1, 2, 3, 4; k′ �= k) satisfy either (4.3) or (4.4):

(t × ṽk(q1))�ṽk′(q1) ≥ 0, (4.3)
(t × ṽk(q1))�ṽk′(q1) ≤ 0. (4.4)

We note that the number of selected vertices is at least two and that it is two
if and only if the four epipolar planes are different from each other (this occurs
in most cases). In the case where more than two vertices are selected, namely,
the case where two epipolar planes coincide with each other, only two vertices
having different epipolar planes from each other are used. When v1(q1) is one
of the selected vertices, we always use v1(q1) due to the speciality of the vertex
in our digitization of image planes (see Fig. 2).

Let µ(q1) and ν(q1) be the two selected vertices vk(q1)’s where µ(q1) is
the smaller than ν(q1) with respect to k. For µ(q1), we define a function with
respect to p̃2 = (p�

2 , f2)�, i.e., the coordinates of p2 ∈ I2 represented in C2.

hµ(q1)(p̃2) =
{

µ̃(q1)�Ep̃2 if µ(q1) is selected by (4.3),
−µ̃(q1)�Ep̃2 if µ(q1) is selected by (4.4),

where µ̃(q1) = (µ(q1)�, f1)�. In the similar way, we define hν(q1)(p̃2) for ν(q1).
We then have two inequalities that represent the intersection of I2 and the
discrete epipolar plane of q1:

hµ(q1)(p̃2) > 0, (4.5)
hν(q1)(p̃2) > 0.

We call the above two inequalities epipolar inequalities. We remark that if µ(q1) =
v1(q1), (4.5) is replaced by

hµ(q1)(p̃2) ≥ 0.

4.3 Discrete Epipolar Line

For a given pixel q1 ∈ K1, the region H(q1) ⊂ I2 satisfying the epipolar inequal-
ities is given by

H(q1) =
{{p2 ∈ I2 | hµ(q1)(p̃2) > 0, hν(q1)(p̃2) > 0} if µ(q1) �= v1(q1),
{p2 ∈ I2 | hµ(q1)(p̃2) ≥ 0, hν(q1)(p̃2) > 0} otherwise. (4.6)

We digitize the image plane I2 in the same way as (3.2) and obtain K2. We
also define Ω(q2) ⊂ I2 for a pixel q2 ∈ K2 (cf. (3.3)). Then, H(q1) and Ω(q2)
enable us to represent a set of pixels satisfying the epipolar inequalities in K2:

DEL(q1) = {q2 ∈ K2 | H(q1) ∩ Ω(q2) �= ∅}.
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We call DEL(q1) the discrete epipolar line for a pixel q1 ∈ K1. As we see the
discrete epipolar line can be interpreted as the digitization of H(q1).

Though the discrete epipolar line DEL(q1) for a given pixel q1 is defined as a
set of pixels in K2, in its computation we require a processing to be done in the
continuous space I2 because of H(q1)∩Ω(q2). This indicates that straightforward
computing of DEL(q1) is not practical. We present a computationally feasible
algorithm below to compute DEL(q1) from H(q1) where each pixel in K2 is
checked whether it is included in DEL(q1) using epipolar inequalities.

Algorithm 1 [Computing a discrete epipolar line]

Input: H(q1) computed from a given pixel q1 ∈ K1.
Output: A discrete epipolar line DEL(q1) ⊂ K2.
begin

1. Set DEL(q1) to be empty.
2. For each q2 ∈ K2,

2.1. compute four vertices vi(q2) ∈ I2 (i = 1, 2, 3, 4);
2.2. switch µ(q1)

case µ(q1) �= v1(q1): if at least one vi(q2) exists that satisfies
hµ(qi)(ṽi(q2)) > 0, where ṽi(q2) = (vi(q2)�, f2)� (i = 1, 2, 3, 4);
case µ(q1) = v1(q1): if at least one vi(q2) exists that satisfies
hµ(qi)(ṽi(q2)) > 0 (i = 2, 3, 4) or hµ(q1)(ṽ1(q2)) ≥ 0;

2.2.1. if at least one vi(q2) exists that satisfies hν(q1)(ṽi(q2)) > 0 then
put q2 into DEL(q1).

3. Compute4 e2 such that hµ(q1)(ẽ2) = 0 and hν(q1)(ẽ2) = 0, where ẽ2 =
(e�

2 , f2)�.
4. If e2 ∈ I2 then

4.1. obtain the digitization of e2; let the digitization be ε2 ∈ K2;
4.2. if we obtain two connected components D1 and D2 in DEL(q1)

when we remove ε2 from DEL(q1) then
4.2.1. q2 = ε2;
4.2.2. while q2 = ε2 do for s ≥ 1

let a 3D point be P = s(v1(q1)�, f1)�; represent P in the sec-
ond camera coordinate system C2 and obtain the pixel q2 that
represents its image point in I2 (cf. (3.4));

4.2.3. select a Dk (k = 1, 2) that includes q2, and set DEL(q1) =
Dk ∪ {ε2}.

5. Return DEL(q1).
end

We see that discrete epipolar lines enjoy the following properties.

Property 1. For a pixel nearby an epipole, its discrete epipolar line dominates a
wider region, while it does a small region for a pixel far from an epipole.

4 e2 is knows as an epipole.
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Property 2. For the pixel including an epipole in an image, its discrete epipolar
line in the other image expands into the whole image.

We denote by V1 and V2 the 3D spaces in R3 observable by two given
cameras with their positions and orientations. For a 3D point P in V1 ∩ V2,
we let q1 and q2 be the pixels in K1 and K2 representing its image points. We
call such a pair of pixels q1 and q2 corresponding pixels with respect to P as
a counterpart of corresponding points in the conventional framework. We see
that the discrete epipolar line gives a constraint on pairs of corresponding pixels
across K1 and K2.

Proposition 2. For a pixel q1 ∈ K1, its corresponding pixel in K2, if exists, is
included in DEL(q1).

Corollary 1. For any pair of corresponding pixels, their pyramidal rays of sight
always have a non-empty intersection in V1 ∩ V2.

In the conventional framework, for a point p1 ∈ I1, a point p2 ∈ I2 satisfying
the epipolar equation (2.2) is selected as its corresponding point. In practice,
however, what we can deal with are not the points p1 and p2 but the pixels
q1 and q2, digitization of p1 and p2. We thus have to select one point from q1

and one point from q2, and then apply triangulation to the selected points to
reconstruct a 3D point. The rays of sight obtained in such a way do not always
meet in the 3D space [6]. In that case, we cannot reconstruct any point in space
as the intersection of the rays of sight. In our framework, on the other hand,
the pyramidal rays of sight for any pair of corresponding pixels do have their
non-empty intersection in the 3D space even if digitization errors exist. That is,
in the framework of the discrete epipolar geometry, a non-empty region in the
3D space does exist that is reconstructed from any pair of corresponding pixels.

5 3D Reconstruction and Its Experiment

5.1 3D Reconstruction from Corresponding Pixels

In the conventional epipolar geometry, we reconstruct a point in space from a
pair of corresponding points as the intersection of their rays of sight. In our
discrete epipolar geometry, however, a pair of corresponding pixels provides a
polyhedron as the intersection of their pyramidal rays of sight.

Let q1 ∈ K1 and q2 ∈ K2 be a pair of corresponding pixels, and V1 and
V2 be the 3D spaces observable from the first and second cameras, respectively.
Their pyramidal rays of sight S1(q1) ⊂ V1 and S2(q2) ⊂ V2 are then given,
similarly to (4.1), by

S1(q1) = { X1 ∈ V1 |
(ṽ1(q1) × ṽ2(q1))�X1 ≥ 0, (ṽ2(q1) × ṽ3(q1))�X1 > 0,

(ṽ3(q1) × ṽ4(q1))�X1 > 0, (ṽ4(q1) × ṽ1(q1))�X1 ≥ 0}, (5.1)
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S2(q2) = { X1 ∈ V2 | X1 = RX2 + t,

(ṽ1(q2) × ṽ2(q2))�X2 ≥ 0, (ṽ2(q2) × ṽ3(q2))�X2 > 0,

(ṽ3(q2) × ṽ4(q2))�X2 > 0, (ṽ4(q2) × ṽ1(q2))�X2 ≥ 0},(5.2)

where ṽi(q1) = (vi(q1)�, f1)�, ṽi(q2) = (vi(q2)�, f2)� (i = 1, 2, 3, 4), and R and
t are a rotation matrix and a translation vector relating the coordinates in C1

and C2. We remark that X1 in (5.2) is the coordinates of a 3D point represented
in C1 while X2 is the coordinates of the same point represented in C2. This is
because the coordinate transformation between C1 and C2 is required to obtain
the intersection of S1(q1) and S2(q2) as the sets of points in space represented
in the same coordinate system C1.

For a pair of corresponding pixels, q1 ∈ K1 and q2 ∈ K2, the triangulation
reconstructs the intersection of their pyramidal rays of sight:

F = S1(q1) ∩ S2(q2). (5.3)

(5.3) indicates that in our formulation, reconstructed is the polyhedron that
consists of all possible points in space though which rays of sight of any points
in the two corresponding pixels pass.

Proposition 3. From any pair of corresponding pixels, a polyhedron bounded
by at most eight planes is reconstructed. The polyhedron is a set of points in
space satisfying the eight inequalities (5.1) and (5.2).

5.2 Experiments

We assume that the following parameters of two cameras are known: the rotation
matrix R and the translation vector t relating the coordinates in C1 and C2, the
focal lengths f1 and f2 of the two cameras, and the resolutions 1/r1x and 1/r1y of
the x- and y-coordinates on I1, and 1/r2x and 1/r2y of the x- and y-coordinates
on I2. For a given point P ∈ V1 ∩V2, we have the unique pair of corresponding
pixels q1 ∈ K1 and q2 ∈ K2, as given in (3.4). We here reconstruct a polyhedron
F(P ) from (5.3) using our discrete epipolar geometry.

To the 3D point P � = (0, 0, 100)� in C1, we reconstructed F(P �) under three
different parameters given below.
Parallel camera position:

R =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , t =

⎡
⎣ 0

0
100

⎤
⎦ , f1 = f2 = 50, 1

r1x
= 1

r1y
= 1

r2x
= 1

r2y
= 1.

Orthogonal camera position:

R =

⎡
⎣0 0 −1

0 1 0
1 0 0

⎤
⎦ , t =

⎡
⎣100

0
100

⎤
⎦ , f1 = f2 = 50, 1

r1x
= 1

r1y
= 1

r2x
= 1

r2y
= 1.

Orthogonal camera position with low image resolution:
the parameters are the same as the above orthogonal camera position except
for the image resolutions: 1

r1x
= 1

r1y
= 1

r2x
= 1

r2y
= 0.5.
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Fig. 5. Reconstructed polyhedra F(P �) for the point P � = (0, 0, 100)� under the

parallel (a) and the orthogonal (b,c) camera positions. The image resolution of (c) is

lower than that of (b)

Figure 5 shows the reconstructed polyhedra F(P �) under each camera position.
Note that we digitized the 3D space by voxels with sufficiently higher resolution5

than the image resolutions and that F(P �) is represented by a set of voxels whose
centroids satisfy eight inequalities of (5.1) and (5.2). Voxels observed in Fig. 5
are, therefore, due to the 3D-space digitization.

We see that the shape and size of F(P �) depend on the camera parameters.
Reconstructed F(P �)’s in (a) and (b) in Fig. 5 are almost the same in size

while they are quite different in shape. When two cameras are with the parallel
position where two principal axes are parallel with each other (Fig. 5 (a)), the
shape of F(P �) expands to the direction of the principal axes. That is, larger
ambiguity in reconstruction exists in the direction of the principal axes than that
in the baseline direction. When two cameras are with the orthogonal position
where two principal axes are orthogonal with each other, on the other hand,
the shape of F(P �) does not expand to the direction of the principal axes. This
implies that relative position and orientation between two cameras plays an
important role in ambiguity in reconstruction.

When we compare F(P �)’s in (b) and (c) in Fig. 5, we see that even with
the same position and orientation in setting up two cameras, image resolution
affects preciseness in reconstruction. The higher the image resolution becomes,
the better preciseness in reconstruction becomes. We note that a smaller size of
F(P �) indicates that P � is more precisely reconstructed. This is because F(P �)
provides us with the possible locations for P � reconstructed from q1 and q2.

We finally remark that similar discussion on error analysis in 3D reconstruc-
tion can be found, for example, in [2, 11], where statistical analysis based on the
conventional epipolar geometry is used. Employed statistical models, however,
can be applied to only the case of the parallel camera position above. In contrast,
the proposed discrete epipolar geometry enables us to investigate errors incurred
in 3D reconstruction under general camera parameter setting.

5 In our experiments, 3D space resolution is 10 times as high as image resolutions.
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6 Conclusions

We focused, in this paper, on pixels as the smallest unit of images rather than
points and established the discrete epipolar geometry, i.e., a discrete version
of the conventional epipolar geometry. To be more specific, we introduced a
pyramidal ray of sight and a discrete epipolar line as counterparts of a ray of
sight and an epipolar line, and gave their mathematical descriptions. We also
presented some experiments of 3D reconstruction using the discrete epipolar
geometry.

The conventional epipolar geometry, which is widely used so far, is formulated
in continuous image planes, while the discrete epipolar geometry is in discrete
image planes. The smallest unit of digital images is not a point but a pixel. This
motivated us to restructure geometric relationships on points between multi-
ple views so that they hold in terms of pixels. The discrete epipolar geometry
introduced in this paper is a first step to such a direction and opens a new
framework that is capable to discriminate digitization errors from observation
errors in handling digital images.
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